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Diabetes and insulin resistance are on the rise in the United States. Early detection and 

deployment of therapies has allowed for the reversal of pancreatic beta cell damage. 

Unfortunately, not all providers can offer the support to facilitating the required life style 

modifications. The introduction of clinical health consultants (CHC) as supplemental care has 

improved patient health for a variety of chronic diseases. Missing in the literature are studies 

investigating the correlation between the number of CHC interactions and improvement in 

biomarkers.  

The study utilized a non-experimental, retrospective study design to evaluate the 

relationship between the use between the use of CHCs and the number of CHC interactions, and 
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the mean changes in glucose, hemoglobin A1c, insulin, proinsulin, C-peptide, and 1,5-

anhydroglucitol, over a one-year period for patients presented with the opportunity to participate 

in CHC interactions. The subjects’ follow-up results were compared to their initial results for 

each group using the ANCOVA and one-way t-test.  

A statistically significant difference was detected between the mean change in BMI and 

the use of CHCs (p <0.001). In addition, a statistically significant relationship was identified 

between the number of CHC interactions and the magnitude of change in BMI (p< 0.001).  No 

statistically significant differences were detected for the other study biomarkers.  Initial 

biomarker values and random error explained a majority of the differences found between the 

CHC and non-CHC groups. The use of CHC interactions had a minimum effect on the statistical 

models used to compare the CHC and non-CHC groups.  
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Chapter 1: Introduction 

 

 

Overview 

 The study investigated the relationship between the number of clinical health consultant 

(CHC) interactions and changes in biomarkers used to evaluate glucose homeostasis related to 

diabetes, insulin resistance and beta cell dysfunction. The retrospective study utilized previously 

collected data, including glucose, hemoglobin A1c (HbA1c), 1,5-anhydroglucitol (1,5-AG), 

insulin, C-peptide, proinsulin, and BMI results, as well as the number of patient-CHC 

interactions. The results of this study contributed to the knowledge of the potential efficacy of 

CHCs in improving the management and outcomes of patients with diabetes, insulin resistance or 

beta cell dysfunction.   

 Chapter 1 states the study’s purpose, hypotheses, and a summary of health coaching and 

data sources with background information on the health risks related to diabetes, and some of its 

potential precursors, insulin resistance and beta cell dysfunction. Chapter 2 provides an overview 

of diabetes and a literature review of biomarkers related to glucose homeostasis, diabetes, insulin 

resistance, and beta cell dysfunction, disease treatment, and the CHC profession. Chapter 3 

details the methods used in the study, including sample selection, biomarker testing, and 

statistical analysis. Chapter 4 presents the results of statistical analysis and subject demographics. 
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Chapter 5 offers a discussion of the results, study limitations, and recommendations for future 

studies.  

Background 

Diabetes is a disorder of glucose metabolism that affects 30.3 million people in the 

United States (US), or 9.4% of the American population. Of those, 7.2 million or 23.1% are 

reportedly undiagnosed (Centers for Disease Control and Prevention, 2014; Centers for Disease 

Control and Prevention, 2017). Diabetes increases the risk of heart disease and stroke, as well as 

many other microvascular and macrovascular comorbidities. Improperly managed diabetes can 

result in kidney disease, blindness, and amputations. There are four classifications of diabetes: 

Type 1 diabetes (T1D) is caused by the autoimmune or other toxic destruction of pancreatic beta 

cells. Type 2 diabetes (T2D) is due to a progressive loss of beta cell insulin secretion that follows 

the development of insulin resistance. Gestational diabetes mellitus (GDM) develops during the 

second or third trimester of pregnancy, with no diagnosis of diabetes prior to pregnancy. 

Secondary diabetes is caused by monogenic defects resulting in beta cell dysfunction, including 

neonatal and maturity-onset diabetes (Riddle, 2018).  Additional causes of secondary diabetes 

include disorders of the pituitary, thyroid, or adrenal glands, diseases of the exocrine pancreas, or 

drug and chemical related diabetes (Riddle, 2018).  Estimates show that of all the individuals 

with diabetes, 90-95% have T2D. (Centers for Disease Control and Prevention, 2017). Type 2 

diabetes, unlike T1D, is potentially a preventable disease. The development of T2D is not an 

acute process, but rather a slowly progressive condition that results in beta cell dysfunction.  

Several conditions are associated with the risk of developing T2D including obesity, reduced 

exercise, smoking, high blood pressure, and high cholesterol (Centers for Disease Control and 

Prevention, 2017).  
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Peripheral blood glucose levels are determined by exogenous glucose from the 

breakdown of consumed food, and endogenous glucose produced by the liver. Hepatic 

conversion of glycogen to glucose, known as glycogenolysis, and glucose production from 

amino acids known as gluconeogenesis, occur during times of decreased glucose ingestion such 

as sleep and between meals. To compensate for increases in plasma glucose concentrations, in 

insulin resistant states, the pancreatic beta cells secrete more insulin, in an effort to enable 

peripheral tissues to take up glucose. Over time, the beta cells become exhausted and lose their 

ability to produce sufficient insulin. Early detection of this process allows for lifestyle 

modifications that can potentially delay or reverse the progression to T2D. Diabetes was ranked 

as the seventh leading cause of death in 2015, due to complications such as cardiovascular 

disease, stroke, end-stage renal disease, and diabetic ketoacidosis. Early detection and 

intervention has the potential to reduce diabetes related morbidity and mortality (Centers for 

Disease Control and Prevention, 2017).   

The lifestyle modifications required of patients to prevent and/or treat T2D can be 

controversial, challenging, and sometimes overwhelming to the patient.  The American Diabetes 

Association (ADA) recommends that individuals with diabetes should participate in diabetes 

self-management education and support (DSMES), medical nutrition therapy (MNT), physical 

activity, smoking cessation counseling, and psychosocial care (American Diabetes Association, 

2018).  The introduction of self-management programs has shown to have a positive effect on 

weight loss and lifestyle modification. 

CHCs can help facilitate the process of lifestyle modification and treatment compliance 

that is required for positive patient outcomes. The development of treatment goals through 

discussion between the patient and a CHC is an initial step of therapy. CHC involvement 
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provides support for patients secondary to the care received from their providers. The CHC-

patient interaction can increase motivation to comply with recommended therapies through 

behavior change therapies, identifying underlying factors that may influence an individual’s 

motivation, as well as plan nutritional and exercise options. The main objective of a CHC 

program is not to treat but to educate the patient and help create the changes needed to overcome 

their condition.  

Research Problem  

 Many patients find it difficult to change their lifestyle based on health care provider 

recommendations, despite the understanding that it is needed to improve their overall health. 

Perceived treatment efficacy, physician trust, worsening of diabetes symptoms, medication cost, 

complexity of medication dosage and the side effects of medications are factors that lead to 

patient noncompliance (Polonsky & Henry, 2016). These barriers to patient compliance suggest 

that doctor-patient interaction is not sufficient for implementing lifestyle changes. Ambivalence 

related to motivation and lifestyle changes may also present as barriers (Kehler et al., 2008). 

Studies demonstrate that CHC interactions may facilitate and improve adherence to these 

lifestyle changes and correlate CHC interactions with changes in markers such as BMI and 

HbA1c (Leahey & Wing, 2013; Pettitt, 2013; Wayne & Ritvo, 2014; Wolever et al., 2010). The 

mentioned studies only compare a control group to a treatment group with a set number of CHC 

interactions. Missing are studies relating the number of CHC interactions to the magnitude of 

change in specific biomarkers are lacking. Furthermore, there is no literature on the effect of 

CHC interactions on markers of insulin resistance and beta cell dysfunction such as insulin, C-

peptide, and proinsulin, or the more recent glycemic marker, 1,5-AG.   
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Purpose of the Study and Research Question 

The purpose of this study was to retrospectively examine the relationship between 

patients engaging in CHC interactions and changes in glucose, %HbA1c, 1,5-AG, insulin, C-

peptide, proinsulin, and BMI to determine the effectiveness of CHC interactions on potential 

change in patient health. The study examined patient results and CHC utilization to determine if 

a correlation between the number of CHC-patient interactions and changes in biomarkers over 

time exists. The study attempted to answer the research question, is there a relationship between 

the changes in patients’ biomarkers of glucose homeostasis and beta cell health and their 

interactions with CHCs? 

Specific Aims  

The study had three Specific Aims: 

Specific Aim 1: Determine if there are statistically significant differences between 

patients who do or do not participate in CHC interactions in their changes in 1) blood 

glucose concentration, 2) %HbA1c, 3) blood 1,5-anhydroglucitol concentration (1,5-AG), 

4) blood insulin concentration, 5) blood C-peptide concentration, 6) blood proinsulin 

concentration, and 7) body mass index (BMI). 

This was addressed by comparing the difference between initial biomarker results and follow-up 

results 10-14 months from initial testing, for two groups, 1) those who participated in CHC 

interactions, and 2) those who did not. Changes in biomarker values were calculated for each 

marker in both the CHC and non-CHC groups and compared statistically. 

Specific Aim 2: Determine if statistically significant differences exist in the change in 

diabetes and BMI health scores between subjects who did and those who did not interact 

with CHCs for glucose and HabA1c. 
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Arbitrary health scores were assigned to initial and follow-up testing results. Health scores were 

based upon ADA recommended cutoffs for normal, prediabetic, and diabetic values for glucose 

and HbA1c, and BMI guidelines for normal, overweight, and obese individuals. The change in 

health score was calculated between initial and follow-up testing 10-14 months from initial 

testing for two groups, 1) those who participated in CHC interactions, and 2) those who did not. 

Group health score differences were then statistically compared. 

Specific Aim 3:  Determine the relationship between the number of CHC interactions and  

magnitude of the change in 1) blood glucose concentrations, 2) % HbA1c, 3) blood 1,5-

anhydroglucitol (1,5-AG) concentrations, 4) blood insulin concentrations, 5) blood C-

peptide concentrations, 6) blood proinsulin concentrations and 7) body mass index 

(BMI).   

This was determined by the use of a general linear model to compare the magnitude of change in 

each biomarker between subjects with different numbers of CHC interactions. Change in 

biomarker values were compared to varying numbers of CHC interactions. Post-hoc Bonferroni 

tests of multiple comparisons evaluated the mean change between groups. 

Significance of the Study 

 CHC interactions have shown to be effective in the management and treatment of 

diabetes and other related conditions. Studies investigating the effect of CHC interactions have 

only utilized the markers of weight loss and HbA1c (Leahey & Wing, 2013; Pettitt, 2013; Wayne 

& Ritvo, 2014; Wolever et al., 2010). There is no literature on CHC interactions and potential 

change in insulin, C-peptide, proinsulin, and 1,5-AG, nor on the connection between the number 

of CHC interactions and the magnitude of the biomarker change. The results of this study 

increase the knowledge on the relationship between the number of CHC-patient interactions and 
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improvements in biomarkers for diabetes and insulin resistance. This knowledge could help 

guide the creation and planning of CHC-mediated therapies to maximize their effectiveness and 

efficiency for attaining patient treatment goals. Study findings could also serve as a foundation 

for future studies on how to reduce health care costs and improve patient care utilizing CHCs.  

Summary of Data Sources and Analysis 

Data for this study was gathered from two databases. The laboratory information system 

(LIS) at a laboratory in Richmond, VA contained archived patient results for the biomarkers of 

interest, starting in April 2012. A query of the LIS provided biomarker results, along with subject 

demographics such as age, gender, and body mass index.  

The CHC information management system (IMS) database at the same laboratory housed 

the dates of patient-CHC interactions.  An initial query of the LIS identified patients that met the 

study inclusion criteria. Then, a query of the IMS accessed information on CHC interactions for 

the subjects identified from the LIS query.  

Data from both the LIS and the IMS were merged into a single Microsoft Excel file.  The 

Principle Investigator imported the data set into Statistical Package for the Social Sciences 

(SPSS) for data analysis. The study utilized a one-way analysis of covariance (ANCOVA) and 

linear regression. This approach allowed for the determination of within subject differences in 

biomarkers, as well as the relationship between CHC-patient interactions, the study independent 

variable (IV) and the changes in the markers, the study dependent variables (DVs), while 

adjusting for the patient demographics sex, age, and BMI, the study covariables (CV).   

Chapter Summary  

 Chapter 1 provided background on diabetes, the challenges of lifestyle modification, and 

how CHCs can help facilitate the change required to improve patient health. Multiple studies 
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demonstrate the ability of CHCs to change BMI and %HgbA1c but none address the effects of 

CHCs on other makers used to monitor glucose homeostasis and beta cell health. Chapter 2 

offers an overview of the pathophysiology of diabetes, biomarkers of glucose homeostasis, and 

the potential impact of CHCs on health care outcomes, along with the gaps in literature that this 

study hopes to fill. Chapter 3 provides the proposed study’s methodology, including the target 

population, sampling strategy, data collection methods and analysis, and potential limitations. 

Chapter 4 presents the study findings, while Chapter 5 discusses the study results and describes 

the study limitations, and recommendation for future studies.  
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Chapter 2: Literature Review  

 

 

Introduction 

Chapter 1 introduced the proposed study including the study purpose, aims, and research 

questions. Chapter 2 provides an overview of the pathophysiology of diabetes, biomarkers of 

glucose homeostasis, treatments for diabetes, and the clinical health coach professions. First, an 

overview of glucose homeostasis and diabetes is presented. Next, information detailing the 

markers used in the study is discussed. Finally, information describing CHCs and relevant 

studies demonstrating their effect on improving patient health is presented.       

Overview 

A key to controlling diabetes, and potentially reversing the progression towards T2D, is 

the identification of biomarkers of the prediabetic state. Monitoring biomarkers closely linked to 

diabetes, insulin resistance, and beta cell function allows for the evaluation of diabetes risk and 

control.  Measuring glucose, 1,5- anhydroglucitol (1,5-AG), and hemoglobin A1c (%HbA1c) 

provide a snapshot of glucose concentration in the peripheral blood at the time of venipuncture, 

as well as an estimate of the average glucose concentration over the past two weeks to 3 months. 

Abnormal levels of C-peptide, insulin, and proinsulin in the blood alerts providers to the 

presence of beta cell dysfunction or death. If detected early, deployment of therapies can 

potentially reverse the damage sustained to pancreatic beta cells.  
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Adherence to the lifestyle changes required to manage or prevent diabetes is not easy. It 

is estimated that a majority of adult diabetics fail to follow physician prescribed treatments for 

their disease (Funnell, 2006; Gonzalez, Shreck, Psaros, & Safren, 2014; Willard-Grace et al., 

2013). CHC interactions, when coupled with provider therapies, have shown to have a positive 

effect on health outcomes (Appel et al., 2011; Battista et al., 2012; Eakin, Lawler, Vandelanotte, 

& Owen, 2007).  A common belief in health coaching is that the patient has the ability to adopt 

healthy behaviors if given the proper guidance. The professional health coach is an educator, one 

whose goal is to provide information and support that elicit change in patient behavior and 

physical health.  

Glucose Homeostasis 

Plasma glucose homeostasis is the result of the dynamic balance between glucose intake 

and hepatic synthesis, and the demand for and uptake of glucose by organs and cells including 

the brain, gut, liver, kidneys, pancreas, adipocytes and myocytes. The liver and brain take up 

glucose directly, not requiring an insulin dependent glucose transporter. The kidneys help 

regulate glucose by allowing glucose to be excreted into the urine if the glucose renal threshold 

of 180 mg/dL is exceeded.  Beta cells, the site of insulin production, are found in a region of the 

pancreas called the Islets of Langerhans. Two major types of cells in the Islets of Langerhans, the 

alpha and the beta cells, are specific to glucose homeostasis. Alpha cells produce glucagon, a 

hormone that stimulates the production of glucose from glycogen, amino acids, glycerol, and 

lactate in the liver. Beta cells produce insulin, the hormone responsible for the regulation of 

glucose transportation from the peripheral blood into the cell.  

Insulin production begins with the synthesis of a parent peptide, preproinsulin. (Chan, 

Keim, & Steiner, 1976). Preproinsulin, a protein comprised of approximately 100 amino acids, 
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has a short half-life of approximately one minute before it is enzymatically cleaved (Patzelt et 

al., 1978). Within the rough endoplasmic reticulum (ER) of the beta cells, the 23 amino acids at 

the N-terminal of  preproinsulin are removed and two disulfide bonds are formed, resulting in the 

formation of proinsulin (Steiner, Cunningham, Spigelman, & Aten, 1967).  Proinsulin is then 

transported to the Golgi apparatus where it is packaged into storage granules along with 

prohormone convertases 1 and 2, and carboxypeptidase H. This conversion is proportionate with 

glucose concentration and dependent on the availability of convertase enzymes PC2 and 

PC1/PC3 (Nagamatsu, Bolaffi, & Grodsky, 1987). Within the Golgi apparatus, the cleavage of 

the 31 amino acid C-peptide from proinsulin forms the hormone insulin. C-peptide and insulin 

remain within secretory granules in the beta cells until an increase in blood glucose levels 

triggers the release of insulin into the blood.  

  Glucose stimulation of insulin secretion by the beta cells requires a cascade of events. 

First, the glucose transporter 2 (GLUT2) found on the membrane of beta cells transports glucose 

from peripheral blood into the beta cell. Glucose then undergoes glycolysis within the beta cell, 

generating an increase in ATP.  The increase in ATP causes the ligand-gate potassium channel to 

close, resulting in an increase in intracellular potassium level and membrane depolarization. 

Membrane depolarization allows extracellular calcium to enter the beta cell via voltage-gated 

Ca2+ channels, with increasing calcium concentrations signaling the insulin-containing vesicles 

to release insulin and C-peptide. Insulin secretion is biphasic, with the first phase of insulin 

secretion occurring 2-3 minutes after glucose levels rise and lasting for around 10 minutes. The 

second phase of insulin release occurs after the initial, with glucose levels still elevated, and 

continues until glucose homeostasis is achieved. Individuals with T2D are shown to have 

impaired insulin secretion in the first phase (Cerasi, 1992). Secreted insulin circulates in the 
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blood and binds to insulin receptors on the surface of cells such as adipocytes and muscle cells, 

stimulating the translocation of the glucose transporter GLUT4 from intracellular storage 

vesicles to the cell membrane (Saltiel & Kahn, 2001).  

The alpha and beta cells of the pancreas work in tandem to maintain glucose homeostasis. 

In addition to facilitating the glucose uptake by peripheral cells, a high ratio of insulin/glucagon 

also promotes the storage of glucose as glycogen in the liver and muscle cells. Conversely, when 

plasma glucose concentrations fall as in a fasting state, the alpha cells release glucagon, signaling 

the liver to convert glycogen to glucose and to promote gluconeogenesis. The inability of the 

body to regulate glucose levels in the peripheral blood, caused by lack of insulin, or insulin 

resistance, is characteristic of diabetes.  

Diabetes 

Diabetes is a disorder of glucose metabolism that affects 30.3 million people in the 

United States (US), or 9.4% of the American population. Of those, 7.2 million or 23.1% are 

reportedly undiagnosed (Centers for Disease Control and Prevention, 2014; Centers for Disease 

Control and Prevention, 2017). There are four classifications of diabetes: Type 1 diabetes (T1D) 

is caused by the autoimmune destruction of pancreatic beta cells. Type 2 diabetes (T2D) is a 

progressive loss of beta cell insulin secretion that is highly correlated with insulin resistance. 

Gestational diabetes mellitus (GDM) is a diagnosis of diabetes during the second or third 

trimester of pregnancy with no diagnosis of diabetes prior to pregnancy. Secondary diabetes is 

due to causes including neonatal and maturity-onset diabetes, disease of exocrine pancreas, 

disorders of the pituitary, thyroid, or adrenal glands, pancreatic insufficiency, and drug and 

chemical related diabetes (Riddle, 2018) . One of the diagnostic clinical signs of diabetes is the 

inability to regulate plasma glucose concentration. Over time, the metabolic abnormalities of 
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diabetes can lead to numerous potential microvascular complications such as diabetic 

nephropathy and failure, neuropathy, retinopathy, macrovascular complications, and 

atherosclerotic vascular disease (coronary, peripheral, cerebrovascular). Uncontrolled diabetes 

can also result in a sudden onset of ketoacidosis and hyperosmolar coma, as well as eventual 

kidney failure, blindness, and amputations (Forbes & Cooper, 2013).  

Type 1 Diabetes 

Type I diabetes is characterized by an autoimmune destruction of pancreatic beta cells, 

the cells responsible for secreting the hormone insulin. Genetic mutations, specific to class II 

human leukocyte antigen (HLA) alleles encoding HLA DRB1*03:01-DQA1*05:01-

DQB1*02:01 abbreviated DR3 and HLA DRB1*04:01/02/04/05/08-DQA1*03:01-

DQB1*03:02/04 (or DQB1*02; abbreviated DR4 on chromosome 6p21.31, are highly correlated 

with T1D. The HLA regions I and II are responsible for the production of antigens that bind 

antigenic peptides involved with T-helper cell presentation. Specifically to T1D, T- cell 

presentation of autoantigens typically leads to the production of autoantibodies to proteins found 

in the beta cells. It was noted that mutations resulting in HLA DR3/DR4 heterozygotes are more 

closely linked to T1D than homozygotes of either haplotype (Nobel & Valdes, 2011). The 

antibodies typically found in the plasma of Type 1 diabetics are insulin antigen antibody (IAA), 

and anti-glutamic acid decarboxylase (anti-GAD) (Balakhadze, Giorgadze, & Lomidze, 2016).   

Type 1 diabetes usually occurs before the age of 15, but may not be diagnosed until later in life. 

In addition to their age at the time of diagnosis, patients with adult onset of T1D can be 

distinguished from adolescent T1D by higher body mass index (BMI) and C-peptide values 

(Törn et al., 2000).  
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There are several stages of T1D (Table 1), with clinical symptoms usually seen at the 

later stages (Skylar et al., 2017), (Insel et al., 2015). In stage 1, autoantibodies are present, with 

the absence of any clinical signs of diabetes and normal glucose metabolism. During stage 2, 

patients begin to have impaired fasting glucose. Fasting plasma glucose (FPG) levels may rise 

above the normal cutoff of 99 mg/dL but still below the 126 mg/dL clinical cutoff for diabetes; 

or the 2-hour post-prandial sample in an  oral glucose tolerance test (OGTT) may be between 

140-199 mg/dL. Percent HbA1c values may rise above the normal cutoff of 5.6%, but below the 

diabetic cutoff of 6.5%. Patients in Stage 3 display clinical signs of diabetes, polyuria/polydipsia, 

with one-third having diabetic-ketoacidosis. Stage 3 is also confirmed with FPG and % HbA1c 

values consistent with a diagnosis of diabetes: FPG ≥ 126 mg/dL, a two-hour OGTT ≥ 200 

mg/dL, or %HbA1c ≥ 6.5. 

Table 1: Type 1 Diabetes Diagnosis by Stage 

Stage of Type 1 Diabetes Diagnostic Criteria 

1  Positive for multiple autoantibodies 

 No impaired glucose tolerance test 

 No impaired fasting glucose 

2  Positive for multiple autoantibodies 

 Dysglycemia:  

o FPG 100–125 mg/dL (5.6–6.9 mmol/L) 

o 2-h PG 140–199 mg/dL (7.8–11.0 mmol/L) 

o A1C 5.7–6.4% (39–47 mmol/mol) or ≥ 10% 

increase in A1C 

3  Clinical symptoms 

o polyuria/polydipsia, and one-third with diabetic 

ketoacidosis (DKA) 

 Hyperglycemia 

 Diabetes by standard criteria 
Adopted from (Skylar et al., 2017), (Insel et al., 2015), (Cefalu, 2017), (Dabelea et al., 2014) 

Controlling T1D involves coordinated management of diet, exercise, and insulin 

injections (Riddle, 2018). Therapies designed to normalize glucose metabolism in type 1 



www.manaraa.com

 

 

15 

 

diabetics have secondary benefits of reducing cardiovascular events. The link between glycemic 

control and macrovascular disorders is well-established (Klein, 1995; Shamoon et al., 1993).  

Type 2 Diabetes  

Unlike T1D, T2D is not due to a cellular immune reaction to the beta cells in the 

pancreas. Rather, the development to T2D begins with accumulation of fat on muscle, liver, and 

pancreatic tissue, resulting in inflammation, insulin resistance, and then eventual beta cell 

dysfunction (Riddle, 2018; Skyler et al., 2017).  Inflammation can lead to a disruption of the 

ability of insulin to activate receptors on the cells in insulin dependent tissues such as muscles. 

This phenomenon, termed “insulin resistance,” leads to diminished activity in insulin-mediated 

pathways, such as the uptake of glucose (Sinaiko & Caprio, 2012). Cusi et al. concluded that the 

ability of insulin to stimulate the phosphatidylinositol 3-kinase (PI 3-kinase) pathway, the 

enzyme responsible for the transduction of insulin binding to its receptor and the recruitment of 

glucose transport proteins to the surface of cells, was reduced in obese patients and almost 

undetectable in patients with T2D (Cusi et al., 2000). The reduction of glucose transport into the 

cells results in increased plasma glucose concentrations.  

Individuals with insulin resistance can have glucose concentrations and % HbA1c that are 

still below the diabetic diagnostic threshold.  Protracted hyperglycemia due to insulin resistance 

signals pancreatic beta cells to secrete more insulin, leading to increases in the beta cell products 

proinsulin, insulin, and C-peptide in the blood. The state of insulin resistance with mild 

hyperglycemia may be present for many years before beta cell damage is clinically apparent. 

When the beta cells can no longer produce enough insulin to maintain FPG and %HbA1c within 

normal levels, the diagnostic threshold of prediabetes are crossed. The American Diabetes 

Association (ADA) and the International Expert Committee on the Diagnosis and Classification 
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of Diabetes Mellitus have recognized this group of individuals whose glucose levels do not meet 

criteria for diabetes as “prediabetic” (The Expert Committee on the Diagnosis and Classification 

of Diabetes Mellitus, 2003). Prediabetes is not considered its own disease state; patients with 

prediabetes are at an increased risk for developing T2D and cardiovascular complications 

(Armstrong, 2017). 

At this point, beta cell function continues to deteriorate without lifestyle adjustments. 

When patients in a prediabetic state are identified, interventions such as lifestyle changes can 

delay or even prevent progression to T2D.  When 80% of beta cell function is lost, circulating 

levels of insulin, proinsulin, and C-peptide start to decrease, eventually leading to levels of 

hyperglycemia and %HgbA1c that are consistent with T2D (DeFronzo & Abdul-Ghani, 2011). If 

interventions fail to preserve the remaining beta cells, the patient will require exogenous sources 

of insulin, similar to Type 1 diabetics (Weir & Bonner-Weir, 2004).   

Figure 1 illustrates the chronological relationships between various parameters of the 

derangement of glucose homeostasis along the progression to T2D.   

 

 
Figure 1: Diabetes Progression Timeline 
Duplicated with permission, (Ramlo-Halsted & Edelman, 1999) 
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Weir, et al have proposed 5 stages in the progression to T2D:  

 Stage 1, Compensation. The first stage is characterized by the ability to maintain 

normal blood glucose concentrations but only because of an increase of insulin 

production. Compensation is thought to entail an increase in beta cell mass to 

accommodate the increase in insulin. Monitoring blood glucose concentrations or 

%HgbA1c would not indicate the presence of insulin resistance or potential 

progression towards T2D. 

 Stage 2, Stable adaptation. Beta cells can no longer maintain normal glucose 

levels in the peripheral blood, and patients demonstrate sustained elevated post-

prandial glucose, and fasting blood glucose levels up to 130 mg/dL, along with 

impaired glucose stimulation of insulin secretion. Patients may avoid progression 

to Stage 3 for many years, with lifestyle changes such as diet and exercise 

(Knowler et.al., 2002).  

 Stage 3, Unstable Early Decompensation. Functional beta cells have declined to a 

level where there is inadequate response to elevated glucose concentrations, and 

glucose levels rise to as high as 350 mg/dL in a short period of time. 

 Stage 4, Stable Decompensation. Beta cell size and mass that is half of that in 

normal individuals. Most patients with T2D can remain in Stage 4 for the rest of 

their lives, with a sufficient amount of insulin production to prevent diabetic 

ketoacidosis.  

 Stage 5, Severe Decompensation. The loss of beta cells is so severe that patients 

become susceptible to ketoacidosis and are totally dependent on insulin for 

survival. Glucose levels are typically >350 mg/dL (Weir & Bonner-Weir, 2004).  
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According to the ADA, a diagnosis of diabetes is made if one of any of the following 

conditions is demonstrated on more than one occasion: [1] HbA1c is ≥ 6.5%, [2] fasting glucose 

is  ≥  126 mg/dL, [3] the two-hour specimen from an oral glucose tolerance test (OGTT) is  ≥ 

200 mg/dL or  [4] the patient has a random blood glucose concentration > 200 mg/dL along with 

the clinical symptoms of diabetes (Cefalu, 2017). Patients without  clinical signs of diabetes and 

whose lab results do not meet the criteria for diabetes may be classified as prediabetic, according 

to the ADA, if they demonstrate fasting blood glucose concentrations between 100 mg/dL and 

125 mg/dL, %HbA1c concentrations between 5.7 and 6.4%, or a two-hour post-prandial blood 

specimen from an OGTT between 140 mg/dL and 199 mg/dL (Cefalu, 2017).  In 2015, it was 

estimated that in the US, 37% of adults over 18 and 48.3% of all adults aged 65 and above are 

prediabetic (Centers for Disease Control and Prevention, 2017). It is recommended that 

individuals who are asymptomatic have their blood glucose and %HgbA1c measured if they 

have a BMI greater than 25 kg/m
2
 or have other risk factors for diabetes such as reduced 

exercise, a family history of diabetes, or a less than healthy lifestyle (American Diabetes 

Association, 2013).  Increases in age and BMI are highly correlated with the occurrence of T2D 

(American Diabetes Association, 2013);(Centers for Disease Control and Prevention, 2017). 

Gestational Diabetes  

 Gestational diabetes is the diagnosis of diabetes in the second or third trimester of 

pregnancy, in the absence of T1D or T2D prior to conception. Gestational diabetes is associated 

with an increased risk of perinatal complications and maternal T2D after delivery (Riddle, 2018). 

The exact pathophysiology of GDM is unknown; however, obesity and increased BMI are highly 

correlated with the development of GDM (Ehrenberg, Dierker, Milluzzi, & Mercer, 2002; 

Hedderson, Williams, Holt, Weiss, & Ferrara, 2008). Testing for GDM usually occurs at 24-28 
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weeks gestation in women with no prior diagnosis of diabetes. If a woman is diagnosed with 

GDM, she is tested again at 4-12 weeks postpartum for persistent diabetes. Testing can be done 

two ways, a one-time dose of 75g glucose OGTT or a two-step 50g OGTT screen followed by a 

100g OGTT for positive screen results. The one-time 75g OGTT cutoffs for diagnosis of GDM 

are a fasting glucose ≥ 92 mg/dL, 1 hour glucose ≥ 180 mg/dL, or a 2 hour glucose ≥153 mg/dL. 

According to the ADA, glucose measurements of ≥ 130 mg/dL, 135 mg/dL, or 140 mg/dL at 1 

hour following a 50g load are all acceptable positive cutoffs, with the 140 mg/dL cutoff being 

the most specific (70-88%) and the 130 mg/dL cutoff being the most sensitive (69-89%) (Riddle, 

2018). The cutoff used is dependent on the physician’s preference. Patients would then receive a 

100 g OGTT at their next visit. There are two criteria for 100g OGTT cutoffs, the Carpenter-

Coustan and the National Diabetes Data Group (NDDG). According to Carpenter-Coustan, the 

diagnosis of diabetes is made if at least two of the following are met: Fasting glucose ≥ 95 

mg/dL, a 1 h glucose ≥180 mg/dL, a 2 h glucose ≥ 155 mg/dL, a 3 h glucose ≥ 140 mg/dL. 

According to the NDDG, a diagnosis of diabetes is made if fasting glucose is ≥ 105 mg/dL, 1 

hour glucose ≥190 mg/dL, 2 hour glucose ≥ 165 mg/dL, or 3 hour glucose ≥ 145 mg/dL 

following the 100 g load. Table 2 illustrates the two different methods for diagnosis GDM. 

Table 2: Criteria for GDM Diagnosis  

One Step strategy 75-g OGTT 

Two-Step Testing 

50-GOGTT ≥ 130 mg/dL (7.5 mmol/L) positive 

100- OGTT Cut-off 

Carpenter-Coustan NDDG 

Fasting 
92 mg/dL  

(5.1 mmol/L) 

95 mg/dL  

(5.3 mmol/L) 

105 mg/dL  

(5.8 mmol/L) 

1 h 
180 mg/dL  

(10 mmol/L) 

180 mg/dL  

(10.0 mmol/L) 

190 mg/dL  

(10.6 mmol/L) 

2 h 
153 mg/dL  

(8.5 mmol/L) 

155 mg/dL  

(8.6 mmol/L) 

165 mg/dL 

 (9.2 mmol/L) 

3 h N/A 
140 mg/dL  

(7.8 mmol/L) 

145 mg/dL  

(8.0 mmol/L) 
Classification and Diagnosis of Diabetes (Riddle, 2018) 



www.manaraa.com

 

 

20 

 

Treatment for gestational diabetes could include a lifestyle changes such as a modified diet and 

exercise schedule, along with glucose monitoring and/or insulin injections to assist reaching 

glycemic targets of fasting glucose < 95 mg/dL (Riddle, 2018).  

Diabetes Due to Other Causes 

 Causes for secondary diabetes include single gene mutations causing neonatal diabetes, a 

diagnosis of diabetes within the first six months of life, and maturity-onset diabetes of the young 

(MODY), a condition typically characterized by impaired insulin secretion and hyperglycemia 

before the age of 25. Specifically, MODY is the result of defective insulin production in 

response to increases in plasma glucose concentration (Fajans & Bell, 2011). In both neonatal 

and MODY, the cause of genetic mutation can be spontaneous, or the result of autosomal or 

recessive gene inheritance.  Due to their unusual circumstance, these types of diabetes usually 

require the involvement of a diabetes specialist to determine the best treatment routine. Disease 

of exocrine pancreas such as cystic fibrosis and pancreatitis are also causes of secondary 

diabetes. Additionally, disorders in the pituitary, thyroid, or adrenal glands, pancreatic 

insufficiency, and drug or chemical interactions can cause secondary diabetes (Riddle, 2018).   

Treatments for Diabetes  

Lifestyle choices such as smoking, lack of exercise, diets high in carbohydrates and low 

in fiber can contribute to the development towards T2D.  If detected early, lifestyle modifications 

such as regular exercise, lower energy intake, better food choices, smoking cessation, and 

medication can diminish or halt disease progression and improve cells’ sensitivity to insulin 

(American Diabetes Association, 2018; National Diabetes Information Clearinghouse, 2014).  

Furthermore, Godsland et al. concluded that loss of beta cell function is highly correlated with 

increases in age and BMI (Godsland, Jeffs, & Johnston, 2004). Unfortunately, reversal of overt 
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T2D is much more difficult. By the time diagnostic glycemic thresholds of hyperglycemia have 

been crossed, severe beta cell damage has already occurred. It is recommended to develop and 

maintain a healthy lifestyle early, before beta cell damage becomes irreversible. A 2005 study 

reported that individuals who underwent intensive lifestyle modifications significantly improved 

insulin sensitivity and beta cell preservation over the course of one year (The Diabetes 

Prevention Program Research Group, 2005). Diabetes self-management, such as self-monitoring 

of blood glucose levels and diet selection, combined with education, and support, are correlated 

with increases in diabetes knowledge and self-care (Haas et al., 2012). 

 Once a patient is identified as being at risk for progression to T2D, education and 

support are important components, along with lifestyle changes, of a plan to reverse the process. 

However, patients often lack the ability to stick to a treatment plan. Gonzales pointed out that 

less than half of adult diabetics maintain an HbA1c level below recommended glycemic goal, 

mostly due to non-adherence to medication (Gonzalez, Shreck, Psaros, & Safren, 2014). 

Furthermore, less than 10% of individuals follow physician guidelines to stop smoking or lose 

weight (Haynes, 2001). Specifically, less than 17% of patients with T2D reportedly follow 

providers’ prescribed regimens for diet, exercise, medication taking, glucose testing, and 

appointment keeping (Funnell, 2006; Skovlund & Peyrot, 2005).  Data suggests that dependence 

solely on physicians’ directives is not sufficient to successfully manage T2D. Barriers to 

compliance include: patient’s perceived treatment efficacy, worsening of diabetes symptoms and 

side effects of medication, treatment complexity and convenience, cost of treatment, concerns 

related to negative effects of the medication being prescribed, and /or physician trust (Polonsky 

& Henry, 2016). In their 2001 study, Claxton et al. concluded that adherence to diabetes 

medication is inversely related to the number of daily doses. They found that the percent 
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adherence dropped from 79% with a single dose per day to 51% for medications requiring four 

doses per day (Claxton, Cremer, & Pierce, 2001).  In 2009, Mann et al investigated the 

correlation of disease and medication beliefs and drug regimen adherence. Their survey of poorly 

adherent subjects concluded that some barriers to adherences include beliefs that [1] medication 

is needed only at times of hyperglycemia (56%, p=0.006),  [2]  is not needed when their glucose 

is normal (53%, p=0.02), [3] when the side effects would likely be severe (42% of poorly 

adherent subjects, p=0.001), and [4] that the medications instructions made them too difficult to 

take (74% of poorly adherence subjects, p=0.001) (Mann, Ponieman, Leventhal, & Halm, 2009).   

Examples of some currently available medications include those to help control glucose 

levels by promoting insulin secretion (sulfonylureas and meglitinides), by reducing hepatic 

glucose production (biguanids), by reducing the reabsorption of glucose by kidney (SGLT2 

inhibitors), or by reducing the absorption of glucose in the intestines (a-Glucosidase Inhibitors). 

Medications may not be needed for all patients. Lifestyle modifications, such as a low-calorie, 

low-fat recommended diets, and moderate intensity exercise for at least 150 minutes per week, 

have the potential to improve glucose control in patients with T2D (American Diabetes 

Association, 2018).  Nondiabetic patients who adhere to these recommendations saw greater than 

50% reduction in the occurrence of T2D, compared to only 31% of those only taking metformin, 

an oral drug used to help control plasma glucose levels by reducing hepatic glucose production, 

for 2.8 years (National Institute of Health, 2002).  In addition to diet, a structured and monitored 

moderate exercise program alone may lead to improvement of glucose metabolism (Liao et al., 

2015). Torjensen et al. investigated the effect of three interventions, diet alone, diet and exercise, 

and exercise alone on the reduction of insulin resistance. At the end of one year, they found that 

the all interventions group showed a decrease in fasting glucose; but the diet and exercise 
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intervention group showed the greatest (0.3 mmol/L reduction compared to the control group 

(0.0 mmol/l reduction) (p < 0.0010) (Torjesen et al., 1997). 

CHC interventions, especially the promotion of increased physical activity, may have an 

impact on the improvement of 1,5-AG levels in patients.  Honda et al. demonstrated that a post 

prandial exercise routine consisting of stair climbs (two sets) for three minutes, increased 

peripheral blood 1,5-AG concentrations (Honda et al., 2017). Measuring plasma 1,5-AG 

concentrations may serve as a marker for the success of CHC intervention to change lifestyle 

behaviors that lead to improved glycemic control.  

Lifestyle modifications used to improve glucose homeostasis may also reduce insulin 

resistance, as evidenced by lower insulin levels. In their inpatient study, Boden et al. concluded a 

low carbohydrate diet reduced insulin as well as glucose concentrations in the plasma of patients 

with T2D (Boden, 2008). Trap et al. demonstrated that high intensity intermittent exercise (HIIE) 

significantly reduced fasting plasma insulin concentrations in women compared to the control 

and steady state exercise groups (p < 0.05) ( Trapp, Chisholm, , Freund,  & Boutcher, 2008). 

Rice also demonstrated that a combination of reduced caloric intake and exercise has a greater 

effect on reducing insulin levels as opposed to diet alone (p< 0.05) (Rice, Janssen, Hudson, & 

Ross, 1999).  

Treatment of patients with diet, exercise, and medication has been shown to reduce 

proinsulin levels. Medication, such as pioglitazone, a thiazolidinedione class drug, increases 

insulin sensitivity by increasing glucose transporters 1 and 4, improving glucose uptake by cells, 

and reducing circulating glucose, thus lowering the demand of insulin secretion (Smith, 2001). 

Kubo found that treatment of patients with T2D with pioglitazone led to a significant decrease in 

proinsulin levels from a mean of 24.7 pmol/L to a mean of 14.0 pmol/L (p <0.01) (Kubo, 2002).  
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Torjesen et al. compared the effects of three interventions on insulin sensitivity. Subjects were 

randomly assigned to a control group, or one of three treatment groups: diet only, exercise only, 

or diet and exercise combined intervention. After one year, subjects in all three different 

treatment groups showed significantly lower proinsulin levels compared to subjects in the control 

group (Torjesen et al., 1997). In addition, the subjects in all three treatment groups showed 

significantly lower plasma C-peptide concentrations compared to those in the control group (p 

value of < 0.0011 for all three intervention groups) (Torjesen et al., 1997).  

Glucose 

 Glucose is a monosaccharide that is utilized by every cell in the body to drive the 

phosphorylation of ADP to ATP. Plasma glucose may originate from the digestion of complex 

carbohydrates in food, the breakdown of glycogen in the liver, and gluconeogenesis, the 

production of glucose from non-carbohydrate substances by the liver and kidney (Krebs, 1964). 

Additionally, in times of prolonged starvation, liver and kidney glucose production is equal in 

proportion (Owen et al., 1969).   

The body normally maintains circulating blood glucose levels between 70 - 99 mg/dL 

when in a fasting state.  In patients with diabetes or prediabetes, prolonged exposure to higher 

than normal levels of glucose in the peripheral blood have been linked to both microvascular and 

macrovascular complications. These can include nephropathy, neuropathy, retinopathy, 

cardiovascular disease and peripheral arterial disease. In their 2005 study of normal male 

patients, Tirsho et al. concluded higher fasting plasma glucose levels within the normal glycemic 

range are at an increased risk for T2D (Tirosh et al., 2005).  
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Hemoglobin A1c 

Hemoglobin, the principal cytoplasmic protein of red blood cells (RBC), is a tetramer 

consisting of four globin chains, each one having a heme group bound to the polypeptide 

structure. Normal adult hemoglobin A (HgbA) consists of two alpha chains and two beta chains. 

Within each heme group, one ferrous iron binds to four nitrogen atoms within the heme 

structure. The ferrous iron binds reversibly with oxygen.  In a non-enzymatic reaction, glucose 

can form a Schiff base with the N-terminal valine of the beta chains at a rate directly 

proportional to the concentration of glucose in the blood (Brownlee, 1995). The product of this 

glycation reaction can undergo an Amadori rearrangement to form a stable covalent 1-amino-1-

deoxy-2-ketose derivative of hemoglobin A, also known as HbA1c.  

Once hemoglobin is glycated, it remains glycated for the life of the erythrocyte in which 

it is contained. Since the rate of HbA1c production is directly proportional to the peripheral 

blood glucose concentration, the higher the average concentration of glucose in the blood, the 

higher the percent of HgbA that is glycated at any point in time.  The average lifespan of normal 

RBCs is 120 days. Therefore, the percent of HbA1c in a blood specimen reflects the integrated 

average of blood glucose concentrations over the previous 3 months. As with FPG, the risk of 

diabetes related microvascular and macrovascular complications in patients with T2D is 

positively associated with %HbA1c levels >6.0% (Stratton et al., 2000).  Furthermore, the risk of 

myocardial damage increases as patients move from normal to a prediabetic state, to a diagnosis 

of diabetes (Selvin et al. 2014). Other hemoglobins, such as hemoglobin A2, hemoglobin S, and 

hemoglobin E can also be glycated; but since their half-life is not the same as HbA1c, the 

reference range for % HbA1c cannot currently be used to assess glycemic control in patients 

with these variant hemoglobins. The %HbA1c at any point in time has been shown to be a better 
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indicator of average blood glucose concentrations over time than periodically measured blood 

glucose concentrations; therefore, a better indicator of the risk for the long-term complications of 

persistently elevated plasma glucose concentrations (International expert committee report on the 

role of the A1C assay in the diagnosis of diabetes, 2009). Treatments aimed at lowering glucose 

in turn affect %HbA1c over time. As average blood glucose concentrations decrease, the 

%HbA1c decreases proportionately.   

There are limitations if only %HbA1c is used to monitor patients for the risks of 

complications of diabetes and/or response to diabetes therapy. Variations in RBC lifespan can 

influence the cumulative glycation of HgbA, and can alter the %HbA1c (R.M. Cohen et al., 

2008).  This could give %HbA1c values that do not quantitatively reflect average blood glucose 

concentration. The %HbA1c could be falsely elevated in patients with iron deficiency anemia 

and asplenia due to the longer lifespan of these RBCs (Christy, Manjrekar, Babu, Hegde, & 

Rukmini, 2014);(Radin, 2014). Falsely decreased levels may be seen with conditions resulting 

from increased RBC turnover such as acute or chronic blood loss, splenomegaly, and red cell 

transfusion (Radin, 2014).  

1,5-anhydroglucitol 

Another method of monitoring elevated or postprandial blood glucose concentration is to 

measure 1,5-anhydroglucitol (1,5-AG) concentrations in blood. 1,5-AG (Figure 2) is a dietary 

monosaccharide that closely resembles the molecular structure of glucose  
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Figure 2: Glucose and 1,5- anhydroglucitol molecules 

 

Concentrations of 1,5-AG in blood can provide an indication of hyperglycemia and 

postprandial glycemia. Normally, 1,5-AG is removed from the blood by glomerular filtration, 

and reabsorbed by the renal tubules in the kidney. Most 1,5-AG is returned to the blood via renal 

tubular reabsorption, with very little excreted in the urine, thus maintaining a constant level in 

the blood. In patients with normal glucose homeostasis, the concentration of 1,5-AG in blood 

remains stable over a 24-hour period, with minimal variation due to short-term dietary changes 

(Yamanouchi et al., 1987). In states of hyperglycemia, glucose competes with 1,5-AG for renal 

tubular reabsorption. Due to the similarity in structure, once plasma glucose concentrations 

exceed the renal threshold for reabsorption of approximately 180 mg/dL, 1,5-AG is also excreted 

in the urine with a concomitant decrease in plasma 1,5-AG concentrations.  

Plasma 1,5-AG concentration is inversely correlated with both FPG concentration and 

short-term average blood glucose concentrations. In their 1996 study of 56 subjects with newly 

diagnosed non-insulin dependent diabetes mellitus (NIDDM), Yamanouchi et al. reported slight 
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changes in glycaemia can be detected within two weeks using serum 1,5-AG as a marker, sooner 

than with %HbA1c or serum fructosamine concentration. Subject’s 1,5-AG levels dropped from 

7.4 µg/mL to 4.8 µg/mL (p=0.673), while A1c values showed no significant change (P= 0.001) 

(Yamanouchi et al., 1996). Dungan et al (2006). were able to demonstrate, using a continuous 

glucose monitoring system, that plasma 1,5-AG concentrations can be used as indicators of 

glucose change after a meal in patients in either a prediabetic state or with overt diabetes 

(Dungan et al., 2006). Akanuma et al. reported plasma 1,5-AG concentrations in newly 

diagnosed diabetic patients to be 1.9 ± 1.8 µg/mL, compared to 13.4 ± 28.3 µg/mL in healthy 

subjects (Akanuma, Morita, Fukuzawa, Yamanouchi, & Akanuma, 1988). In addition, 

decreasing plasma 1,5-AG concentrations have been correlated with the risk of developing T2D. 

In their 2012 study, Juraschek et al, evaluated serum 1,5-AG and the incidence of diabetes over a 

three-year period. They concluded that higher baseline quartiles of 1,5-AG were associated with 

a lower incidence of diabetes (Juraschek, Steffes, Miller, & Selvin, 2012).    

Insulin 

 Insulin, a 6 kilodalton (kDa) peptide hormone consisting of 51 amino acids, is the 

primary regulator of glucose uptake by peripheral cells. It is composed of one α-chain and one β-

chain connected by two disulfide bonds.  Insulin is secreted by the beta cells, located in the Islets 

of Langerhans of the pancreas, in response to elevated plasma glucose concentrations. The 

binding of insulin to insulin receptors on the surface of insulin-dependent cells stimulates the 

translocation of the glucose transporter GLUT4 from intracellular storage vesicles to the cell 

membrane, facilitating the uptake of glucose. Increases in plasma insulin concentration, in 

concert with decreases in plasma glucagon concentrations, also inhibit hepatic gluconeogenesis. 

(Saltiel & Kahn, 2001).  
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Normal fasting serum insulin concentrations range from 3-9 µU/mL or 20.8 – 62.5 

pmol/L. In cases of frequent hyperglycemia, prolonged exposure of the body’s cells to insulin 

can lead to a desensitization of the cellular receptors to insulin, leading to a state of “insulin 

resistance.” The decreased ability of cells to take up glucose from peripheral blood exacerbates 

the hyperglycemia. Beta cells initially compensate by producing additional insulin, with 

hyperinsulinemia an indication of insulin resistance. Over time, insulin levels continue to rise in 

response to extended elevated plasma glucose concentrations. The increased demand for insulin 

results in beta cell stress, with prolonged beta cell stress eventually lead to beta cell death. As 

beta cell death occurs, the pancreas loses the ability to produce insulin, indicated by 

hyperglycemia with hypoinsulinemia. 

C-Peptide 

C-peptide is the 31- amino acid peptide released from proinsulin by prohormone 

convertases 1 and 2 during the formation of insulin in the storage vesicles of the pancreatic beta 

cells. Insulin and C-peptide are secreted into the portal vein in equimolar concentrations, but the 

concentration of C-peptide in peripheral blood is greater than that of insulin. This is due to C-

peptide not undergoing first-pass metabolism in the liver as insulin does. As a result, the half-life 

of C-peptide is around 30 minutes, six times that of insulin (Polonsky et al., 1986). The majority 

of C-peptide is metabolized and excreted by the kidney (Zavaroni et al., 1987). 

C-peptide may have a physiological effect on cell recognition of glucose and may 

facilitate some transmembrane movement of glucose into cells. Renal tubule cells possess 

numerous C-peptide binding sites. C-Peptide is involved in numerous cell signaling pathways, as 

well as protecting kidney cells from tumor necrosis alpha, a contributing factor in diabetic 

nephropathy (Hills & Brunskill, 2009). In addition, C-peptide has several downstream effects 
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upon binding to cell surface components, including raising intracellular calcium levels, 

increasing PI-3-kinase activity, and stimulation of the Na+/K+ ATPase, the protein complex 

responsible for using energy generated from the hydrolysis of ATP to facilitate the counter 

transport of NA
+
 and K

+ 
across plasma membranes (Hills & Brunskill, 2008). In their 2012 

study, Patel et al. correlated fasting serum C-peptide levels with cardiovascular risk. They 

concluded that nondiabetic patients in the highest quartile (72%) had a significantly higher 

incidence of cardiovascular death, compared to those in the lowest quartile (60 %) (Patel, 

Taveira, Choudhary, Whitlatch, & Wu, 2012). In addition, Heding and Rasmussen concluded in 

their study that mean C-peptide levels of 0.37 nmol/L or 1.11 ng/dL were indicative of normal 

subjects, and mean C-peptide of 0.86 nmol/L or 2.6 ng/mL were correlated with maturity onset 

of diabetes (Heding & Rasmussen, 1975).   

Plasma C-peptide concentrations may be used to evaluate beta cell function. In their 

systematic review, Jones concluded that C-peptide is useful in evaluating insulin secretion and 

diabetes management (Jones & Hattersley, 2013).  C-peptide allows for the evaluation of beta 

cell function in patients taking exogenous insulin. Serum insulin concentrations include both 

endogenous and exogenous insulin, whereas C-peptide concentrations reflect only the 

endogenous activity of the beta cells (Clark, 1999). Plasma C-peptide concentrations also aid in 

the differentiation between T1D and T2D, with higher values associated with insulin secretion 

and the progression to T2D (Service, Rizza, Zimmerman, & Dyck, 1997).   

Proinsulin 

Proinsulin is formed from the polypeptide preproinsulin. Within the endoplasmic 

reticulum of the beta cells, the 23 amino acid-residue signal peptide of preproinsulin is removed 

to form proinsulin. The primary structure of proinsulin consists of the sequence of amino acids 
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that eventually become the alpha and beta chains of insulin, along with the C-peptide fragment. 

Most of the proinsulin is converted to insulin and C-peptide in the storage vesicles of the beta 

cells, and only a small amount of proinsulin is released in to the peripheral blood. However, 

plasma concentrations of proinsulin are usually higher than insulin. Proinsulin has a much longer 

half-life, around 17 minutes, compared to insulin, with a half-life of around 5 minutes (Starr & 

Rubenstein, 1974). In addition, proinsulin has a much lower hepatic extraction than insulin 

(Horwitz, Starr, Mako, Blackard, & Rubenstein, 1975).  

In states of insulin resistance, there is an increased demand for insulin. Proinsulin levels 

may rise in the peripheral blood due to impaired formation of C-peptide and insulin. This is due 

to the increased compensatory synthesis of preproinsulin and the decreased availability of beta 

cell carboxypeptidase H, the enzyme needed to cleave the amino acids from the C-terminal of 

proinsulin to form insulin and C-peptide (Pfützner, Pfützner, Larbig, & Forst, 2004). Research 

has shown that fasting plasma proinsulin concentrations can predict the conversion from 

impaired glucose tolerance (IGT) to T2D along with the severity of hyperglycemia. (Nijpels, 

Popp-Snijders, Kostense, Bouter, & Heine, 1996). Elevated plasma proinsulin concentrations can 

be found in states of glucose intolerance, even in the absence of elevated plasma C-peptide or 

insulin concentrations (Krentz, Clark, Cox, & Nattrass, 1993).  Vangipurapu et al. reported a 

correlation between increased plasma proinsulin concentrations and the worsening of 

hyperglycemia and conversion to T2D (Vangipurapu et al., 2015). Saad et al. reported that the 

degree of proinsulin elevation was directly related to the severity of hyperglycemia (Saad et al., 

1990). This was subsequently confirmed by Røder et al (Røder, Porte, Schwartz, & Kahn, 1998). 

Furthermore, elevated proinsulin levels have been shown to be a risk factor for premature 

coronary artery disease (CAD) (Katz, Ratner, Cohen, Eisenhower, & Verme, 1996).  In addition, 
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Pfutzner et al. concluded that fasting proinsulin levels above 10 pmol/L were associated with 

insulin resistance (Pfützner et al., 2004).  

The previous sections described the various markers of the progression to diabetes. 

Although there is evidence that patients can achieve improvements in biomarkers of glucose 

homeostasis through lifestyle modification, these changes are not easily accomplished.  The next 

section describes the various treatments for diabetes and prediabetes, the CHC profession, and 

the potential impact of CHCs on biomarker results.  

Health Coaches 

Health or wellness coaches have become popular as part of the movement towards 

preventative health. Three types of health coaches exist: peer, mentor, and professional (Leahey 

& Wing, 2013). Peer coaches are individuals with the same condition as the patient, while 

mentors have overcome the affliction of interest. Both peers and mentors can help others achieve 

similar success by sharing experiences of what worked for them at different times of their 

disease/condition. The third type is a professional health or wellness coach. Professional health 

coaches, described as clinical health consultants (CHC) in this study, receive formal training by 

means of procedure review, training checklist completion, and attendance of required training 

seminars. CHCs are also often certified in facilitating support by organizations such as the 

National Society of Health Coaches, the American Council on Exercise, or the Wellness School 

of Coaching. The role of a CHC is not to treat the patient, but rather to supplement the work of 

physicians with information and support (Leahey & Wing, 2013). The CHC is an educator whose 

overall goal is eliciting change in a patient’s behavior and physical health.  

 A search of the available literature demonstrates that patient-health/wellness coach 

interactions reduce weight and %HbA1c concentration in diabetic patients, and have a major 
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impact on improving health behaviors (Liddy, Johnston, Nash, Ward, & Irving, 2014). Various 

programs involving repetitive education and support outlets influence positive health outcomes 

(Haas et al., 2012; Liddy et al., 2014), (Leahey & Wing, 2013), (Wayne & Ritvo, 2014). 

Professional education, especially when delivered frequently and over a long period, may yield 

more of the desired patient outcomes for those with T2D (Loveman, Frampton, & Clegg, 2008). 

In a 2007 study, Ko monitored the %HbA1c of subjects who participated in 30 hours of diabetes 

education for five days, followed by a three-hour reinforcement educational session during 

annual follow-up sessions over a course of four years. They found that the study group had lower 

mean %HbA1c values (7.9%), compared to their control group, those who only received an 

initial education of four hours with no annual reinforcement during follow-up visits, ( 8.7%), (P< 

0.05) (Ko et al., 2007). 

A common belief among all coaching approaches is that the patient has the ability to 

adopt healthy behaviors if given the proper guidance. The CHC interactions are geared toward 

changing the behavior of the patient to foster changes in their health.  Achievement of this goal 

for T2D, or patients in a prediabetes state, is dependent on the patient changing their lifestyle to 

include getting regular exercise, eating healthier foods, smoking cessation, or changing other 

negative behaviors that are unique to a specific patient.  

Grounded in coaching psychology, CHCs foster and promote the behavior change 

processes that help produce desired health outcomes (Pettitt, 2013; Wayne & Ritvo, 2014).  One 

key element in reaching the desired change is the patient’s self-efficacy, or belief in their 

capability to reach their goal.  Promoting self-efficacy in patients is a major strategy in health 

coaching to help patients develop the confidence needed to initiate change (Bandura, 1977). In 

addition, it is important that health coaches develop positive experiences with their patients, as 
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negative attitudes can have a major effect on a patient’s self-efficacy (Gonzalez et al., 2014). A 

therapy designed to enhance self-efficacy increases patient involvement and activities that can 

improve both their overall well-being and health outcomes (Wu et al., 2011). 

Clinical health coaches often utilize the framework of the Transtheoretical Model (TTM), 

a model that identifies stages of behavior change. Use of the TTM can help determine the 

patient’s current position on change, as well as their readiness to make the behavior change. 

Transtheoretical Model based interventions focused on physical activity, nutrition and behavior 

change have shown reductions in weight, percent calories from fat and overall calorie intake, and 

increases in exercise (Johnson et al., 2008; Riebe et al., 2003). The TTM consists of five stages 

of change: precontemplation, contemplation, preparation, action, and maintenance. In the 

precontemplation stage, persons are not intending to change in the near future. These individuals 

may not be aware of their poor diet choice or the harmful effects of smoking and lack of 

exercise. In the contemplation stage, persons are more aware of the pros and cons of change, and 

have intentions of changing within 6 months. Persons in the preparation phase are ready to 

change, usually within the next month. They have a plan of action and made accommodations to 

move to the next phase. They may have researched exercise routines and/or gym options, or 

researched healthy eating options. The action phase marks the first significant effort to change 

their behavior.  In the action phase, lifestyle modifications, such as quitting smoking, refraining 

from buying high sugar/high fat foods, and beginning an exercise regimen, are started. Those in 

the maintenance phase are trying to prevent a relapse back to the undesired behavior. These 

individuals continue to eat healthy, exercise regularly, and avoid poor health choices. Movement 

from phase-to-phase is different for each individual; however, those participating in a TTM are 
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more likely to move to action and maintenance stages for self-monitoring of blood glucose and 

healthy eating (H. Jones et al., 2003).  

Adopting the TTM, CHCs often use motivational interviewing (MI) in coaching sessions. 

Motivational interviewing is a coaching approach centered on the patient’s readiness to change, 

and is defined as “client centered, directive method for enhancing intrinsic motivation to change 

by exploring and resolving ambivalence” (Miller, 2002).  Motivational interviewing assists the 

CHC to determine how the CHC interaction session should be carried out (Marley, Carbonneau, 

Lockner, Kibbe, & Trowbridge, 2011). Motivational interviewing has the potential to improve 

patient self-efficacy, patient activation (the patient’s empowerment to work with their provider to 

manage their health), and perceived health status (Linden, Butterworth, & Prochaska, 2010). In 

addition to MI, CHCs are trained to provide empathy during their interaction with the patient. 

Empathy is cognitive understanding of what the patient is feeling or going through and being 

able to project this in a way that can foster assistance for the other individual (Hojat, Louis, 

Maio, & Gonnella, 2016; Hojat, 2007). Empathy can create a bond and strengthen trust between 

the patient and CHC (Hojat, Louis, Maio, & Gonnella, 2013). The use of MI during CHC 

interactions can further foster empathy from the CHCs. When used during health coaching 

sessions, a combination of MI and patient education session has shown to reduce BMI and waist 

circumference, and increase physical activity compared to those receiving education alone (p< 

0.001) (Barrett, Begg, O’Halloran, & Kingsley, 2018). Furthermore, in their 2007 study, Brug et 

al. demonstrated that the use of MI to elicit empathy in patient centered coaching sessions results 

in lower saturated fat intake compared to patients seen by non-MI based dietitians (Brug et al., 

2007).  
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 Health coaches have been used to improve the general health of patients as well as in the 

treatment of patients with chronic conditions such as hypertension and diabetes. In a recent 

study, Leahey and Wing investigated the impact of three different types of health coaches on 

subjects in a weight loss program over six months.  Subjects were all enrolled in a reduced 

intensity behavioral weight loss treatment, with caloric intakes limited to 1200-1500 kcal daily. 

They were expected to increase activity to 40 minutes each day for 5 days per week. This 

program consisted of weekly meetings for the first six weeks, biweekly meetings (once every 

two weeks) for the next six weeks, and then monthly meetings for the last three months of the 

six-month program. Eligible participants were randomized into one of the three types of health 

coaches: professional (n=14), peer (n=16), or mentor (n= 12). The study results demonstrated 

that participants across all of the groups showed reduction in body weight; however, those who 

received the professional health coach intervention had the greatest percentage of weight loss 

(Leahey & Wing, 2013).   

 Apple et al. investigated the effects of different types of health coach interactions on 

weight loss and the ability of participants to meet the goal of either 5% and/or 10% weight 

reduction.  Four hundred and fifteen obese patients were randomly assigned to one of three 

groups: 1) a control group with self-directed weight loss management, 2) a remote intervention 

group receiving weight loss support over the telephone, a study website, and email, and 3) an in-

person intervention group receiving both group and individual weight loss management support. 

After 24 months, both intervention groups showed significant weight loss vs. the control group 

(p<0.001). There was no significant difference in weight loss or participant ability to meet 

weight loss goals between the remote or in-person intervention groups (Appel et al., 2011). The 
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study also provided evidence that CHC interactions can be impactful using technology, and that 

face-to-face communication may not be necessary to influence patient behavior change.     

 Battista et al. investigated the effects of a 12-month dietitian-coached program on T1D 

and T2D patients. In their study, participants were assigned to either a control group with only 

endocrinologist guidance (n=50), or a treatment group receiving quarterly on-site diabetes self-

management education with annual endocrinologist follow-up (n=51). They reported that 

repetitive dietitian guidance significantly reduced %HbA1c levels (0.6% reduction, p=0.04) vs 

the control group (Battista et al., 2012).  

Mobile technologies could help facilitate coaching by introducing a new method of 

communication to aid in client/health coach interactions. The use of smartphones would allow 

faster responses to client questions and encourage a consistent stream of communication between 

the health coach and the client. In 2014, Wayne and Ritvo demonstrated that health coach 

interaction conducted via smartphone technology could aid in the management of clients with 

T2D. The goal of their study was to test a newly developed smartphone-assisted intervention to 

improve behavioral management of T2D in an ethnically diverse, lower socioeconomic 

population within an urban community health setting. A new smartphone application, the 

Connected Health and Wellness Platform (CHWP) Health Coach App, was tested in a 24-week 

intervention with reduction of %HbA1c levels as the primary outcome of interest. For the 19 

individuals entered into their study, the overall mean reduction in HbA1c level was 0.28%. In 12 

subjects who started the program with %HgbA1c values > 7%, the mean reduction was 0.43% (p 

< 0.05) (Wayne & Ritvo, 2014).  

Research into CHC interaction and improvement of health outcomes shows patient 

benefit with CHC utilization. However, there is no published research on the effect of CHC 
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interactions on early markers of insulin resistance and beta cell dysfunction, or research 

concerning the number of interactions required to achieve these benefits. In a systematic review 

of literature on health/wellness coaching and effects on various aspects of health, Wolever found 

that of the 284 health/wellness coach studies identified, 148 did not specify the total number of 

coaching sessions used (Wolever et al., 2013). Of the remaining 136, the authors did not 

investigate the effects of varying numbers of sessions. In addition, only 185 of the 284 total 

studies were empirical with systematic data collection.  In the relevant articles reviewed, study 

participants in the intervention group underwent structured initial coaching sessions, with several 

studies investigating the effects of long-term coaching over several years. Variations in the 

timeframe of coaching interventions were noticed in several studies in their review; however, 

research specifically the effects of the number of coaching sessions on change in health 

outcomes was not reported.   

In their 2008 study, Bray et al. investigated the effects of a diabetes life coach on recently 

diagnosed T1D and T2D patient health. Study participants were assigned a life coach for 

guidance on exercise and diet lifestyle modification. Participants were deemed engaged, 

participating in face-to-face and telephone interventions, or non-engaged. Life coach-patient 

interactions were at least biannually, with the opportunity for unlimited access if necessary. They 

found that individuals who were engaged were 50% more likely to meet ADA guidelines of 

%HbA1c levels < 7.0%, with interventions improving adherence to diet and exercise routines, 

and medication regimens ( p <0.001). The number of visits was not recorded, but could have 

been a potential co-variate in their analysis (Bray, Turpin, Jungkind, & Heuser, 2008). 

 In their systematic review of the effect of telephone interventions on exercise and dietary 

behavior change, Eakin et al. noted that factors associated with a positive outcome included 
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programs that lasted between 6-12 months and those with 12 or more interactions during their 

study (Eakin et al., 2007).  Research describing the effects of differences in the number of CHC 

interactions and changes in biomarkers of glucose homeostasis could provide evidence that 

scheduling additional CHC interactions could improve the health outcomes of patients with or at 

risk of developing diabetes. Therefore, additional research on the effectiveness of CHCs has the 

potential to influence patients to pursue treatment routes that include CHC engagement. 

Furthermore, the lack of research on the effects of CHC interactions on other markers of glucose 

homeostasis such as 1,5-AG and markers of beta cell health such as proinsulin, insulin, and C-

peptide represents a gap in the knowledge of CHC capabilities. This study investigated if there is 

a relationship between CHC interactions and changes in biomarkers of glucose homeostasis. 

Finally, the study explored if the number of CHC interactions is related to those changes.  

Chapter Summary 

 Chapter 2 reviewed disorders of glucose homeostasis, biomarkers of this process and of 

diabetes and prediabetes, and reviewed the CHC profession. Chapter 2 summarized the impact of 

CHC interactions on changes in personal behavior and lifestyle modifications. The review of 

available literature demonstrates the ability of CHC interaction to improve patient health and its 

importance to health care. Literature on CHC interactions and changes in diabetes-related 

markers is not limited. However, research on the effect of the number of CHC interactions on the 

levels of specific biomarkers is lacking. Furthermore, knowledge of CHC interactions and their 

effect on additional markers of glucose homeostasis and beta cell health is absent.  

 

 

 



www.manaraa.com

 

 

40 

 

 

 

 

Chapter 3: Methodology 

 

 

Overview 

Chapter 3 discusses details of the research design, subject database creation, subject 

selection, the research setting, and study variables. The databases used to gather patient results 

and CHC interaction are described, including data extraction, assessment of validity, and 

database management. Statistical analyses used to evaluate each Specific Aim are discussed.  

Problem Statement 

Many patients find it difficult to change their lifestyle based on health care provider 

recommendations, despite the understanding that it is needed to improve their overall health. 

Less than 20 % of adult diabetics comply with provider prescribed medications and lifestyle 

modifications (Funnell, 2006; Gonzalez et al., 2014; Willard-Grace et al., 2013). This suggests 

that doctor-patient interaction is not sufficient in implementing lifestyle changes. Some studies 

demonstrate that CHC interactions may help facilitate and improve adherence to these lifestyle 

changes, improving BMI and % HbA1c, a marker of glucose homeostasis (Haas et al., 2012; 

Leahey & Wing, 2013; Liddy et al., 2014; Wayne & Ritvo, 2014) . However, there are no 

published studies relating the number of CHC interactions to the magnitude of change in specific 

markers. There is also no published research on how CHC interactions affect changes in other 
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markers of glucose hemostasis such as 1,5-AG, or markers of beta cell function such as  

proinsulin, insulin, and C-peptide. 

 Research Question, Specific Aims, and Hypotheses 

The research question for this study is: is there a relationship between the changes in 

patients’ biomarkers of glucose homeostasis and beta cell function and utilization of CHCs? 

Specific Aim 1: Determine if there are statistically significant differences between 

patients who do or do not participate in CHC interactions in their changes in 1) blood 

glucose concentration, 2) %HbA1c, 3) blood 1,5-anhydroglucitol concentration (1,5-AG), 

4) blood insulin concentration, 5) blood C-peptide concentration, 6) blood proinsulin 

concentration, and 7) body mass index (BMI). 

To accomplish this aim, the following hypothesis was tested: 

There is no significant difference in the changes in blood glucose, %HbA1c, 1,5-AG, 

insulin, C-peptide, proinsulin or BMI between patients who interacted with CHCs and 

those who did not.  

This was tested by comparing the difference between initial and follow-up biomarker results, 10-

14 months from initial testing, for two groups, 1) those who participated in CHC interactions, 

and 2) those who did not. Changes in biomarker values were calculated for each marker in both 

the CHC and non-CHC groups and compared statistically. 

Specific Aim 2: Determine if statistically significant differences exist in the change in 

glucose, HabA1c, and  BMI health scores between subjects who did and those who did 

not interact with CHCs. 

To accomplish this aim, the following hypotheses will be tested: 
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There is no significant difference in the change in health scores for glucose, %HabA1c, 

and BMI for patients who had CHC interactions and those who did not.  

Aim 2 was accomplished by first assigning a “health score” to the initial and follow-up 

biomarker results. Health score were based upon ADA recommended cutoffs for normal, 

prediabetic, and diabetic values for glucose and HbA1c, and BMI guidelines for normal, 

overweight, and obese individuals. Normal values for glucose and %HbA1c and a normal BMI 

were given a score of 0. Individuals in a pre-diabetic state based on glucose and %HbA1c results, 

and those with BMIs in the overweight category were assigned a score of 1. Those in the diabetic 

and obese classifications were assigned a value of 2. Changes in health score were evaluated by 

subtracting the follow-up score from the initial score and compared between the treatment and 

control group.  

Specific Aim 3 Determine the relationship between the number of CHC interactions and the 

magnitude of the change in 1) blood glucose concentrations, 2) % HbA1c, 3) blood 1,5-

anhydroglucitol (1,5-AG) concentrations, 4)blood  insulin concentrations, 5) blood C-peptide 

concentrations, 6) blood proinsulin concentrations and 7) body mass index (BMI). 

 To accomplish this aim, the following hypotheses will be tested: 

There is no relationship between the number of CHC interactions and the change in blood 

glucose concentration, %HbA1c, 1,5-AG, insulin, C-peptide, proinsulin, or BMI.  

Specific Aim 3 will be accomplished by linear regression of the magnitude of change in patient’s 

marker results versus the number of CHC interactions. Additionally, a one-way t-test was used to 

compare the mean change of those subjects who utilized CHC interactions. 
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Research Design 

 The current study utilized a retrospective non-experimental study design to investigate 

the relationship between changes in patients’ biomarker results and CHC interactions (Polit, 

2008). The retrospective design allows for the collection of data across varying ages, sex, and 

patient BMI over a span of four years, which would not be practical if a true experimental design 

were utilized.  Repeated measures were used to identify the changes in marker results from the 

subjects’ initial blood draw to their follow-up blood draw 12+2 months after their initial draw.  

Sampling Strategy 

 Preliminary research identified over 200,000 patients that had initial test results and at 

least one set of results 10 to14 months later. The study sample included all of the patients who 

did not meet the exclusion criteria: 

 Patients under the age of 18 years old. 

 Patients over the age of 89 years old 

 Patients missing age, sex, and BMI demographics 

Population and Sample 

 The target population was all persons seen by a health care provider that had laboratory 

testing performed at the Richmond, VA based laboratories, Health Diagnostics Laboratory and 

True Health. This population included patients from across the continental United States. The 

sample for the study consisted of patients with follow-up testing 12+2 months after initial testing 

between April 2, 2012 and July 15, 2016.  A data use agreement between Virginia 

Commonwealth University (VCU) and True Health was signed, allowing research collaboration. 

In addition, an approved VCU IRB (IRB HM20013795) qualified for exemption according to 45 

CFR 46.101(b), Category 4 prior to data collection. In 2012, the laboratory began offering 
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providers a menu of tests specific to diabetes, glucose homeostasis, and pancreatic health. This 

offered providers a tool to screen patients for their risk of developing diabetes and to help 

monitor patients already diagnosed with diabetes or insulin resistance.  

Handling of Protected Health Information 

 For this study, only deidentified patient information was provided to the principle 

investigator (PI). The information technology (IT) team removed patient identifiers such as 

name, date of service, medical record number, and sample ID, and assigned a study number to 

each subject, prior to allowing the PI access to the data. Only the subjects’ biomarker test results, 

age, gender, and BMI were included in the final Excel worksheet used for the data analysis. A 

data use agreement between True Health and VCU along with VCU IRB approval (IRB 

HM20013795) ensure patients are protected and permission granted to use deidentified patient 

data.  

Variables 

Disease marker results were from previously tested subject samples. The same dependent 

variables were utilized for both Specific Aim 1 and 3: changes in the results for glucose, 

%HbA1c, 1,5-AG, proinsulin, insulin, and C-peptide, and BMI over a 10-14-month period. The 

units of measurement for all dependent variables are given in Table 3. 

Table 3: Units of Measure 

Test Units of Measurement of Change 

Glucose mg/dL 

Hemoglobin A1c % 

1,5-Anhydroglucitol µg/mL 

Insulin μU/mL 

C-Peptide ng/mL 

Proinsulin pmol/L 

BMI Weight (Kg)/(height (m))
2
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Specific Aim 1 has one independent variable, CHC interactions or no CHC interactions. 

The independent variable for Specific Aim 3 was the number of CHC interactions over the 10-14 

month interval for those subject in the study.  Specific Aim 2 had the same subjects as Specific 

Aim 1 for glucose, HbA1c, and BMI. The IV was also the same, but the DVs were the changes 

in health score for glucose, HbA1c, and BMI. Specific Aim 2 health scores are described in 

Table 4.  

Table 4: Health Score Variable Table 

 

Test 

Initial Testing 

Health score 

Follow-up Testing 

Health score 

Mean Change in 

Health score 

Glucose Health score 

(Category) 

Health score 

(Category) 

Absolute 

health score change 

Hemoglobin A1c Health score 

(Category) 

Health score 

(Category) 

Absolute 

health score change 

BMI Health score 

(Category) 

Health score 

(Category) 

Absolute 

health score change 

 

Patient demographics of age, sex, initial BMI, and initial marker values were used as 

covariates (CV) in the statistical analysis for all three Aims. The CHCs used in this study were 

registered dietitians, exercise specialist, or registered nurses. These CHCs may have prior 

certifications in health or wellness coaching; however, no certifications in were required for 

employment. All CHCs did complete an initial training, including the completion several online 

based training specific to behavior change, as well as annual competency assessments. The study 

variables described above are listed in Table 5. 
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Table 5: Study Independent and Dependent Variables 

Variable Level of 

Measurement 

Definition of Variable By Aim, IV, DV, 

or CV 

CHC (Y/N) Dichotomous Exposure to CHC. 

Transferred to 0 and 1 for 

statistical analysis. 1 

defines CHC visits, 0 

defines no CHC visits 

Aim 1-IV 

Aim 2-IV 

 

Number of CHC 

interactions 

Interval If utilized CHC, the 

number of interactions 

during study timeframe 

Aim 3-IV 

Change in glucose  Ratio Difference between initial 

and follow-up glucose 

Aim 1-DV 

Aim 3-DV 

Change in % 

hemoglobin A1c 

Ratio Difference between initial 

and follow-up %HgbA1c 

Aim 1-DV 

Aim 3-DV 

Change in 1,5-

Anhydroglucitol  

Ratio Difference between initial 

and follow-up 1,5- 

anhydroglucitol 

Aim 1-DV 

Aim 3-DV 

Change in insulin  Ratio Difference between initial 

and follow-up 

Aim 1-DV 

Aim 3-DV 

Change in C-

peptide 

Ratio Difference between initial 

and follow-up proinsulin 

Aim 1-DV 

Aim 3-DV 

Change in 

proinsulin  

Ratio Difference between initial 

and follow-up C-peptide 

Aim 1-DV 

Aim 3-DV 

Change in BMI Ratio Difference between initial 

and follow-up BMI 

Aim 1-DV 

Aim 3-DV 

Change in glucose  

health score  

Ratio Difference between initial 

and follow-up Glucose 

health score 

Aim 2-DV 

 

Change in HbA1c  

health score 

Ratio Difference between initial 

and follow-up HbA1c 

health score 

Aim 2-DV 

 

Change in in BMI 

health score 

Ratio Difference between initial 

and follow-up BMI health 

score 

Aim 2-DV 

 

CV= covariate, DV = dependent variable, IV = independent variable 

 .  

As previously mentioned, the patient demographics of age, sex, and initial BMI were 

collected and used as covariables in the statistical analysis of the data.  Increases of age as well 

as BMI have been highly correlated with incidences of diabetes. (American Diabetes 

Association, 2013); (Centers for Disease Control and Prevention, 2017). Using these as 
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covariates helped identify the effects of age, sex, and BMI on potential change in biomarker 

values. For evaluating change in BMI, only the subject’s age and sex were included as covariates 

since changes in BMI is the dependent variable. To evaluate the possible propensity for a subject 

to participate in CHC interactions, the relationship between initial biomarker value and changes 

in biomarker values was investigated using ANCOVA. The study CVs are listed in Table 6. 

Table 6: Study Covariates 

Variable Level of 

Measurement 

Definition of Variable By Aim, IV, DV, 

or CV 

Subject ID Nominal Assigned study number  

Sex Dichotomous Transformed to 0 and 1 

for statistical analysis. 1 

defines male, 0 defines 

female 

Aim 1-CV 

Aim 2-CV 

Aim 3-CV 

Age at initial testing Interval Time in years Aim 1-CV 

Aim 2-CV 

Aim 3-CV 

Initial BMI  Ratio BMI at initial blood Draw 

is used as part of the DV, 

change in BMI. BMI 

could be a CV for all 

biomarkers.  

Aim 1-CV/DV 

Aim 2-CV/DV 

Aim 3-CV/DV 

Initial glucose Ratio Used as a CV  Aim 1-CV 

Aim 2-CV 

Aim 3-CV 

Initial HbA1c Ratio Used as a CV  Aim 1-CV 

Aim 2-CV 

Aim 3-CV 

Initial 1,5-AG Ratio Used as a CV  Aim 1-CV 

Aim 3-CV 

Initial insulin Ratio Used as a CV  Aim 1-CV 

Aim 3-CV 

Initial C-peptide Ratio Used as a CV  Aim 1-CV 

Aim 3-CV 

Initial proinsulin Ratio Used as a CV  Aim 1-CV 

Aim 3-CV 
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Marker Testing Methods 

Glucose. Glucose was measured using the Beckman Coulter 5800 automated chemistry 

analyzer. This analyzer utilizes the hexokinase method for glucose measurement (Stein, 1965). 

The Beckman Coulter 5800 has an analytical measurable range (AMR) between 10-800 mg/dL 

and a Clinical reportable range (CRR) between 10-2400 mg/dL with auto dilution.  To evaluate 

assay performance, daily quality control (QC) results were averaged amongst all instruments 

used for patient testing over the lifetime of a single lot. Based upon quality control data for four 

instruments from January 1, 2018 and June 20, 2018, the coefficient of variation for this assay 

was 1.08% at a concentration of 59.57 mg/dL, and 1.74% at a concentration of 362.85 mg/dL. 

The most recent calibrator lot verification, performed in November 2017, indicated a 0% bias 

between the previous lot and the new lot.  

HbA1c.  Prior to March 2015, the Richmond based laboratory utilized the BIO-RAD 

VARIANT II Turbo for measuring %HgbA1c. This method utilizes ion exchange high-pressure 

liquid chromatography (HPLC) (Jones 1979).  In 2014, the laboratory changed to the Premier 

Hb9210™ HgbA1c Analyzer, manufactured by Trinity Biotech, for %HgbA1c measurement, 

which utilizes boronate affinity HPLC (Fairbanks & Zimmerman 1983); (Millia 1981). The 

method comparison between the two showed a slight positive bias in the Trinity assay (Y), 

Y=1.0553x-0.1088, R
2
 = 0.9873. 

The daily QC results were averaged amongst all instruments over the lifetime of a single 

lot to evaluate assay performance.  The Trinity Premier quality control data for seven 

instruments used of patient testing from October 2, 2017 to June 20, 2018 the coefficient of 

variation for this assay was 1.23% at a concentration of 6.04% HgbA1c, and 1.61% at a 

concentration of 9.70% HgbA1c. The most recent calibrator lot verification, performed in May 
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2018, indicated a 1 % bias between the previous lot and the new lot. The BioRad Turbo Variant 

II quality control data for six instruments from December 11, 2013 to March 22, 2014, had a 

coefficient of variation of 2.36% at a concentration of 5.36% HgbA1c, and 1.61% at a 

concentration of 9.70% HgbA1c.  

1,5-AG.  Serum 1,5-AG was measured on the Beckman Coulter AU 5800 platform, with 

a two-step enzymatic assay and reagents produced by Glycomark (Yamanouchi 1996). Assay 

AMR is 1.0-100 µg/mL.  The daily QC results were averaged amongst all instruments used for 

patient testing over the lifetime of a single lot. The coefficient of variation for this assay was 

3.9% at a concentration of 5.47 µg/mL, and 2.56% at a concentration of 14.51 µg/mL for a single 

lot of QC used on seven instruments between December 19, 2017 to April 2, 2018. The most 

recent calibrator lot verification, performed in July 2017, indicated a -2% bias between the 

previous lot and the new lot. 

Insulin.  Insulin was measured on the Roche EMOD
TM

 electro-chemiluminescence 

testing platform. The EMOD
TM 

 Elecsys insulin assay utilizes the sandwich immunoassay 

principle utilizing monoclonal antibodies specific for insulin (Sapin et al., 2001). The AMR is 1-

1000 µU/mL.  Daily QC results were averaged amongst all instruments over the lifetime of a 

single lot. Based upon quality control data for six instruments totaling 12 measuring cells 

between April 25, 2018 and June 20, 2018, the coefficient of variation for this assay was 2.51% 

at a concentration of 25.39 µU/mL, and 2.29% at a concentration of 77.08 µU/mL. The most 

recent calibrator lot verification, performed in August 2017, indicated a -2% bias between the 

previous lot and the new lot. 

C-peptide.  C-peptide was measured on the Roche EMOD
TM

 electro-chemiluminescence 

testing platform. The Roche EMOD 
TM

 assay utilizes the sandwich principle, and uses two 
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monoclonal antibodies specific for C-peptide (Kao, Talyor, & Heser 1992). The AMR is 0.3 – 40 

ng/mL.  The daily QC results were averaged amongst all instruments over the lifetime of a single 

lot. The coefficient of variation for this assay was 2.02% at a concentration of 1.94 ng/mL, and 

2.46% at a concentration of 9.65 ng/mL for four instruments, totaling eight measuring cells for a 

single lot of QC between February 20, 2018 and June 20, 2018. The overall mean bias for two 

calibrator lot verifications, performed in 2018, was 0.0%. 

Proinsulin.  Proinsulin was measured on the Dynex DSX
TM

 testing platform, utilizing an 

ELISA kit from Mercodia
TM

. The proinsulin assay is a solid phase assay based on the sandwich 

immunoassay principle, employing two monoclonal antibodies against separate antigenic 

determinants on the proinsulin molecule (Kjems et al, 1993). The AMR is 2-150 pmol/mL, with 

a CRR of 2-1500 with auto dilution. To evaluate assay performance, daily QC results were 

averaged amongst all plate runs over the lifetime of a single lot. Based upon quality control data 

between May 1, 2018 and June 20, 2018, the coefficient of variation for this assay was 3.92% at 

a concentration of 9.11pmoL/L, and 6.13% at a concentration of 31.23 pmoL/L. The most recent 

lot verification, performed in November 2017, indicated a -2 % bias between the previous lot and 

the new lot.  

From April 2012 to July 2016, all of the assays used to measure the biomarkers included 

in this study underwent changes in reagent and calibration lots that could have potentially led to 

differences in biomarker results from the initial measurement to the follow-up measurement. The 

Richmond based laboratory utilized the following protocol to minimize shifts in patient results 

due to lot changes:  

 For reagent lot changes, 10 patients that ranged from the low-end to the high-end 

of the assay AMR, along with QC, were run using the current lot of reagent, and 
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again using the new lot of reagent. A percent bias of less than 10% was required 

for the new lot to be accepted.  

 For calibrator lot changes, 10 patients that ranged from the low-end to the high-

end of the assay AMR, along with QC, were run using the current calibration 

curve , and again using the new calibration curve. A percent bias of less than 10% 

was required for the new lot to be accepted.  

BMI. Body mass index is calculated as the patient’s mass divided by the square of their 

height in meters =  
𝑀𝑎𝑠𝑠 (𝑘𝑔)

(𝐻𝑒𝑖𝑔ℎ𝑡 (𝑚))2 . Height and weight, if available, were collected at the time of 

blood draw. Body mass index can be categorized as underweight, normal, overweight, and obese, 

with obesity subdivided into three classes. The BMI classifications for the current study are 

displayed in Table 7. For the purpose of this study, health scores were assigned solely according 

to the categories of normal, overweight, and obese.  

Table 7: Patient Classification by BMI 

BMI category BMI (kg/m
2
)

 Study Classification 

Underweight < 18.5 NA 

Normal 18.5 – 24.9 Normal 

Overweight 25.0 – 29.9 Overweight 

Obesity Class 1 30.0 – 34.9 Obese 

Obesity class 2 35.0 – 39.9 Obese 

Extreme Obesity Class 3  ≥ 40 Obese 

Adopted from (Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in 

adults : The evidence report 1998) 

 

Research Setting 

 Laboratory testing was completed at either Health Diagnostics Laboratory or True Health 

Diagnostics, in Richmond, Virginia. The patient population was dispersed throughout the 

continental United States.  Most, but not all specimens, were collected at a physician’s office or 

at other draw sites by a phlebotomist. All samples were sent to Richmond, Virginia for testing 
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and usually arrived within 24 hours of the venipuncture. All samples were shipped with ice packs 

to ensure the optimal temperatures were maintained during sample transportation, with 

temperature verification if samples were suspected of being out of optimal refrigeration 

temperature range of 2-8°C. The laboratory Pre-Analytics Department received and accessioned 

all serum separator tubes (SST) and whole blood Ethylenediaminetetraacetic acid (EDTA) tubes. 

Samples received unspun or outside the optimum temperature range were flagged and affected 

tests were not tested.   

 Patient-CHC interactions were conducted in in a variety of locations. For face-to-face 

interactions, the CHC met with the patient either at a physician’s office or a wellness location, an 

office provided to CHCs and other health practitioners.  Patient-CHC interactions could have 

also occurred over the phone. In either setting, the CHCs were instructed to follow the same 

CHC visit protocol in accordance with their training. In addition, CHC interactions could vary in 

length of time or topics discussed based on patient conditions. There was no data recorded on the 

length of the visit or topics discussed during the CHC interaction.  

 Data collection and analysis took place at True Health Diagnostics. Senior IT analysts 

wrote the code that allowed a search of the LIS and IMS databases, and assisted with sorting and 

refining data once extracted.  

Data Collection 

Data collection was a two-step process. First, a query of the LIS identified potential study 

subjects. The IT team at the laboratory identified patients who had an initial blood draw after 

April 1, 2012, and that had a follow-up blood draw 10 to 14 months after their initial blood draw, 

up to July 15, 2016. Once potential study subjects were selected from the LIS query, a search of 

the CHC information management system (IMS) for the same subjects provided the number and 
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date of the subjects’ CHC interactions, if any. The format of each of the data elements that were 

extracted from each of the two databases are listed in Table 8.  

Table 8: Subject Data Elements Extracted from Harvest LIS and Health Coach IMS 

 

Data Element Format 

Patient identification number XXXXXXX 

Sample ID at initial draw YYMMDDXXXXX 

Date of initial draw MM/DD/YYYY 

Age at initial draw Digit-Continuous 

BMI at initial draw Digit-Continuous 

Sample ID at follow up draw YYMMDDXXXXX 

Date of follow up draw MM/DD/YYYY 

Age at follow up draw Digit-Continuous 

BMI at follow up draw Digit-Continuous 

CHC interactions During Study 0 for no CHC or 1for CHC 

Sex M/F 

Fasting Status at initial draw 

0 for non-fasting, 1 for fasting, or 

2 for not indicated 

Fasting Time at initial draw Digit-Continuous 

Fasting status at follow up draw 

0 for non-fasting, 1 for fasting, or 

2 for not indicated 

Fasting time at follow up draw Digit-Continuous 

Glucose at initial draw Digit-Continuous 

%HgbA1c at initial draw Digit-Continuous 

Insulin at initial draw Digit-Continuous 

Proinsulin at initial draw Digit-Continuous 

C-peptide at initial draw Digit-Continuous 

1,5-anhydroglucitol at Initial Draw Digit-Continuous 

Glucose at follow up draw Digit-Continuous 

%HgbA1c at follow up draw Digit-Continuous 

Insulin at follow up draw Digit-Continuous 

Proinsulin at follow up draw Digit-Continuous 

C-peptide at follow up draw Digit-Continuous 

1,5-anhydroglucitol at follow up draw Digit-Continuous 

 

The data from the LIS and IMS were merged into a single Microsoft Excel file. After 

verification of the data, the IT team provided the PI with a deidentified file. The final 

deidentified study components are listed in Table 9. 
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Table 9: Deidentified Study Dataset 

Data Element Format 

Subject Number Digit 

Age at Initial Draw Digit 

Age at Follow-up Draw Digit 

Sex M/F 

Fasting at Initial  0, 1, or 2                

Fasting Time at Initial Draw Digit 

Fasting at Follow-up Draw 0, 1, or 2                

Fasting Time at Follow-up Draw Digit 

Number of CHC Visits During the Study 

Timeframe 0 or 1 

Number of CHC interactions During Study Digit-Continuous 

BMI at Initial Draw Digit-Continuous 

BMI at Follow-up Draw Digit-Continuous 

Insulin at Initial Draw Digit-Continuous 

Insulin at follow up draw Digit-Continuous 

Glucose at Initial Draw Digit-Continuous 

Glucose at follow up draw Digit-Continuous 

Hemoglobin A1c at Initial up draw Digit-Continuous 

Hemoglobin A1c at follow up draw Digit-Continuous 

C-peptide at Initial up draw Digit-Continuous 

C-peptide at follow up draw Digit-Continuous 

Proinsulin at Initial up draw Digit-Continuous 

Proinsulin at Follow-up draw Digit-Continuous 

1,5-AG at Initial up draw Digit-Continuous 

1,5-AG at follow up draw Digit-Continuous 

 

Validity and Reliability 

Specimen integrity, accuracy of specimen testing and verification of data collection, were 

essential to ensure the results of the current study were valid and reportable. Improperly 

collected, transported, or stored sample could have varying effects on the quality of results 

generated from laboratory instrumentation. Preanalytical component of laboratory quality control 

included a check of specimen integrity and proper labeling prior to testing. Blood specimen 

integrity, i.e. proper tube labeling, shipping temperature of 2-8°C (specimens were acceptable if 

shipped with a cold pack and/or temperature was verified by infrared thermometer if temperature 
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was questioned), signs of hemolysis, clotted or specimens partially spun samples, was checked 

upon arrival to the laboratory that performed the analysis. The Pre-Analytics team reviewed all 

specimens for proper shipping conditions. The date and time of collection was also recorded by 

the Pre-Analytics team, but not included in the study dataset.   

To ensure accuracy of specimen testing, the laboratory adheres to analytical quality 

control measures. Daily, weekly, monthly, and annual maintenance was performed and 

documented for all instruments and equipment used in the preanalytical and analytical phases of 

testing, according to manufacturer’s guidelines and standards set forth by the College of 

American Pathologists (CAP). Calibration and QC of all testing methods were performed in 

accordance with manufacturers’ guidelines or laboratory operating procedure, whichever was 

more stringent. New lots of reagent and calibrator were verified according to the laboratory’s 

standard operating procedures, which require that 10 patient specimens that span the AMR along 

with quality controls for the analyte were measured with both the current and new lot of reagents 

or calibrator. The % bias slope between the two lots must be less than ±10% to be acceptable.  

Quality control measures were also taken in the post analytical phase of data collection. 

The use of two databases allowed for the collection and merging of data while reducing the 

potential of human error associated with transcription. Results were automatically transferred 

from the LIS and MS to the Excel file without human manipulation. The IT team checked 100 

random subjects from the combined Excel database file and compared their name, initial and 

follow-up biomarker testing results, and demographics to those in the LIS and IMS to ensure 

they match. Once the data set was established, The IT team de-identified the subjects by 

replacing patient name and sample number with a new unique study number that was unrelated 

to the laboratory patient identification system.  
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 Polit and Beck (2008) define internal validity as the ability of the study to measure a true 

effect rather than another external factor (Polit, 2008). This study was subject to threats of 

internal validity concerning the laboratory testing and CHC interactions. Threats to internal 

validity concerning the laboratory instrumentation were reduced by limiting testing platform 

variation by following the analytical standards described above required by the laboratory and 

accrediting agencies. Concerning CHC interactions, threats to internal validity were reduced by 

ensuring CHCs followed a structured protocol for behavior change during interactions. Before 

CHCs were allowed to interact with clients, all CHCs were required to participate in company 

mandated training courses. The goal of their training was to standardize the approach of the 

consultation while adapting the best counseling method dependent on the patient’s readiness and 

ability to change the behavior of interest. However, CHC interactions may vary from one patient 

to another, as well as from health coach to health coach.   

Sample Size and Statistical Power 

Sample size requirements were dependent on effect size, power, significance, and the 

number of predictors. A post-hoc sample size calculation was performed with a confidence of 

80% against Type II errors and a confidence of 95% against Type I errors.  Effects size, the 

difference between two groups, aids in the statistical explanation of the effectiveness of a 

particular intervention.  

The study utilized Cohen’s d to generate estimates of effect size for all biomarkers and 

BMI.  Cohen’s d=
𝐺𝑟𝑜𝑢𝑝 1 𝑚𝑒𝑎𝑛−𝐺𝑟𝑜𝑢𝑝 2 𝑚𝑒𝑎𝑛

𝐺𝑟𝑜𝑢𝑝𝑠 𝑐𝑜𝑚𝑚𝑜𝑛 𝑆𝐷
 . A Cohen’s of 0.2 is considered a small effect size, a 

Cohen’s d of 0.5 is considered a medium effects size, and a Cohen’s d of 0.8 is considered a 

large effect size (J. Cohen, 1988). To assess effect size of CHC interactions and change in the 

study biomarkers and BMI, the effects size was calculated post hoc using means and SDs 
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gathered during data collection and calculated from SPSS frequency data analysis. Soper’s 

online calculator for apriori estimates for a multiple regression analysis was used to determine 

sample size requirements, using a power 0.8, probability level of 0.05, the effects size for each 

DV, and up to five predictors dependent on individual model CVs where significant (Soper, 

2018).  

Data Cleaning 

Data from both the laboratory LIS and the CHC IMS were merged into a single Microsoft 

Excel file. The Excel data set was examined for accuracy by the IT team. One hundred random 

subjects from the unaltered data set were checked against the LIS and IMS for biomarker, 

demographics, and CHC interaction data.  The following were removed from the Excel 

spreadsheet prior to loading into SPSS: 

 Patients that did not have both an initial and follow-up result for the disease marker 

being analyzed 

 Non-fasting initial and final draw results for glucose, proinsulin, insulin, or C-

peptide.  

After the data set was reviewed in Excel, the data set was imported into SPSS v24 for data 

analysis (IBM Corp. 2016). 

Randomization was required for the selection of the control groups (non-CHC groups) to 

test the hypotheses for Specific Aims 1and 2. Subjects from the non-CHC group were randomly 

selected to match the approximate number of subjects in the CHC group for each biomarker, 

with the exception of 1,5-AG. For 1,5-AG, the number of subjects in the CHC group (n = 142) 

was > 10% of the non-CHC group (n = 25). Therefore, randomization was not required. The 

number of subjects in the CHC group was divided into the number of subjects in the non-CHC 
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group to calculate the percent of subjects needed to for random selection. Once the percentage 

was calculated, SPSS was used to randomly select the corresponding number of subjects from 

the non-CHC group. The number of subjects used to test each hypothesis is shown in Table 10. 

Table 10: Non-CHC Random Selection 

Test 

CHC 

and 

non-

CHC 

Sample 

CHC 

Subjects 

Non- 

CHC 

Subjects 

% of non-

CHC 

Subjects 

Selected for 

Analysis 

Calculated 

non-CHC 

Sample 

Final 

Sample 

Size for 

Analysis 

Glucose 15,803 969 14,834 6.5 975 1944 

Hemoglobin 

A1c 
37,594 1,357 36,597 3.7 1328 2685 

1,5-AG 142 25 117 21.4 NA NA 

Insulin 15,375 1031 14,344 7.1 922 2023 

C-Peptide 3739 407 3332 12.2 425 832 

Proinsulin 2303 277 2026 13.7 257 534 

BMI 88747 4029 84718 4.8 4043 7854 

 

To ensure the randomly selected sample was not statistically different from the total non-

CHC population, ANOVA was performed on the age, sex, BMI, the initial value for each marker 

to answer the question, was whether there was a difference in each of the variables between the 

group randomly sampled from the non-CHC data set and the complete non-CHC data set?  The 

results from the ANOVA, as shown in Table 11, demonstrate that there was no statistically 

significant difference in age, sex, initial BMI or initial marker result between the entire non-CHC 

sample and the subjects randomly selected for inclusion in the statistical analysis.  
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Table 11: Non-CHC Random Selection ANOVA 

Test 
Age 

p value 

Sex 

p value 

Initial BMI 

p value 

Initial 

Marker 

p value 

Glucose 0.306 0.142 0.464 0.084 

Hemoglobin 

A1c 

0.378 0.444 

 

0.563 

 

0.160 

1,5-AG NA NA NA NA 

Insulin 0.365 0.194 0.956 0.361 

C-Peptide 0.651 0.372 0.916 0.982 

Proinsulin 0.717 0.858 0.870 0.366 

BMI 0.370 0.795 0.613 0.711 

 

Missing data was not a threat to statistical validity as all missing biomarker data were 

eliminated prior to loading the data set into SPSS. Descriptive statistics such as, means and 

maximum and minimum values, for age, sex, initial BMI, and mean change in biomarker along 

with their frequency distributions generated were generated in SPSS prior to data analysis. 

Univariate outliers, or outliers within a single variable, were identified by analyzing 

descriptive statistics and standardized z scores. The standardized score, or z score is the number 

of standard deviations (SD)  a particular value is from the mean of all values (Tabachnick & 

Fidell, 2007). To reduce the effect of BMI univariate outliers on the statistical analyses, all initial 

BMI values were converted to a standardized z score to identify potential outliers.  Eligible 

subjects from all six biomarker groups were entered into a single SPSS file. Descriptive analysis 

performed in SPSS was able to generate a z score of each initial BMI to confirm with 99.9% 

confidence that the cases in the BMI dataset are part of the population represented by the study 

samples (Tabachnick & Fidell, 2007).  Normalization of all subjects’ initial BMI was calculated 

in SPSS to generate a standardized z score. BMI outliers were defined as a BMI z score of < -3.3 

or > 3.3. Subjects with an initial BMI >52.26 were eliminated as having a z score > 3.3. None of 

the initial BMI values had a BMI z score of < -3.3. However, The Diagnostic and Statistical 
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Manual of Mental Health Disorders (DSM-5), derived from World Health Organization 

categories for thinness in adults, classifies BMI between 24 and 17 as mild anorexia, BMI 

between 16.0-16.99 as moderate anorexia, BMI between 15.0-15.99 as sever anorexia, and BMI 

< 15 as extreme anorexia (American Psychiatric Association, 2013). Subjects with BMIs <15 

were eliminated as extreme values.  

To identify univariate outliers, or extreme values for a single variable, the change in each 

marker, with the exception of HbA1c, and BMI were converted to standardized z score in SPSS. 

Markers with z scores < -3.3 and > 3.3 were eliminated as univariate outliers. For %HbA1c, 

Tukey’s extreme values were used to eliminate univariate outliers related to difference in initial 

and final HbA1c values. Tukey’s extreme values were chosen as opposed to z score distribution 

due to the large number of cases that would have been eliminated if z score distributions were 

used (Tukey, 1977). A change in %HbA1c > 9% was determined to be an outlier if z score 

distributions were used, this was not such an abnormal value.  In a 2015 study of %HbA1c 

values and the risk of chronic obstructive pulmonary disease in patients with T2D, Li et al. 

classified patients with HbA1c values > 10% as high, with 9,390 of their 45,753 subjects in that 

category (Li et al, 2015).  

Multivariate outliers, or a combination of extreme values, were identified by 

Mahalanobis distance test (Mahalanobis, 1936). This test generates a score for each subject 

based upon the combination of values of all variables and compares the score to the centroid for 

all other subjects. The cutoff for MD with 6 degrees of freedom is 22.46 and 20.52 for 5 degrees 

of freedom (Pearson and Hartly, 1958). Cases with MD greater than the cutoff were eliminated. 
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 Biomarker minimum and maximum values were compared to the clinical reportable 

range (CRR) for their respective methods in the excel file prior to loading into SPSS.  Values 

outside their CRR (Table 12) were identified and deleted.  

Table 12: AMR and CRR 

Test AMR Dilution CRR 

Glucose mg/dL 10-800 X3 10-2400 

Hemoglobin A1c % 3.8-18.5 NA 3.8-18.5 

1,5-Anhydroglucitol 1.0-110 NA 1.0-110 

Insulin uU/mL 1-1000 NA 1-1000 

C-Peptide 0.3-40.0 NA 0.3-40.0 

Proinsulin 2.0-150 X10 2-1500 

 

Data Analysis 

The goal of Specific Aim 1 was to determine if there are differences in the changes in 

markers between patients who interacted with a CHC and those who did not. The change for 

each marker for each case was calculated. The mean change for each marker for all subjects in 

each group was then calculated, along with the variance in marker change within each group. 

The change for each marker was compared between the two groups.  Patient demographics of 

age, sex, and initial BMI were used as covariates in the analysis of change in marker results and 

included in the final statistical model if significant. For evaluating the relationship between CHC 

interactions and changes in BMI, patient demographics of sex and age were used as covariates. 

To evaluate the possibility that the propensity for a subject to seek CHC interactions might 

influence the change in marker results, the relationship between initial biomarker values and the 

change in biomarker values was investigated. A structural model was developed using the 

general linear model (GLM) procedure in SPSS.  For each marker change, CHC interaction and 

all CVs were proposed as predictors.  The GLM entered each variable using stepwise regression 

and returned one or more models that were statistically significant (p<0.05) on their own and 
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statistically significantly different from the prior (reduced) model. Estimates of the magnitude of 

the correlation and statistical significance (P<0.05) of marker differences and exposure to CHC 

interactions were provided for each model returned by GLM. For those markers in which a 

significant relationship was found, initial biomarker values were used as covariates in the final 

analysis. For each model returned by GLM, an ANOVA table provided sums of squares, an F 

statistic, degrees of freedom for the model, a p value and an eta squared statistic.  The final 

model for each analysis included CHC interaction and any CVs that were statistically significant 

(p<0.05).  Standardized beta weights for each significant predictor in each model, and a t test for 

each beta and zero-order correlations determined the effect size for each of the biomarkers or 

how much variance is shared with the independent variable. The final model output stated if the 

means between the two groups were statistically significantly different, as well as if the use of 

CHC explained a statistically significant amount of that difference.  A p value less than 0.05 

indicated a statistically significant difference between groups, as well as a relationship between 

CHC interaction and change in biomarker and BMI values.   

The goal of Specific Aim 2 was to evaluate the change in glucose, %HgbA1c, and  BMI 

health scores. For this specific aim, the general construct of diabetic health was measured by 

transformation of initial and final glucose, %HgbA1c, and BMI results into health scores.  The 

criteria for the assignment of health scores is listed in Table 13. Interaction with a CHC or no 

interaction with a CHC was the IV. The change in health score was a separate DV.  Interaction or 

no interaction with a CHC was the IV, and initial marker values, if significant, along with age, 

sex, initial BMI, and effects of the CHC interaction, were inserted step-wise as covariates into a 

linear regression to attain estimates of the interactions.  A p value less than 0.05 indicated a 
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statistically significant difference between groups, as well as a relationship between CHC 

interaction and change in biomarker and BMI health scores. 

Table 13: Disease Marker Health scores 

 Health Score 

Test 0 1 2 

Glucose (mg/dL) ≤ 99 100-125 >125 

Hemoglobin A1c (%) ≤ 5.6 5.7-6.4 ≥ 6.5 

BMI 18.5-24.9 25.0-29.9 > 29.9 

 

For Specific Aim 3, the SPSS GLM procedure was again used to perform an ANCOVA 

to provide relevant statistical evidence relating the number of CHC interactions to change in 

mean marker values, using the number of CHC visits as the IV.  As for Specific Aim 1, marker 

differences were used as the DVs, each analyzed separately.  Covariates were initial marker 

values, age, sex, and initial BMI.  Patients who did not interact with a CHC were not included in 

this analysis.  Linear regression was used to attain estimates of the relationship between the 

number of CHC interactions and the changes in biomarker results.  As with Aim 1, p values less 

than 0.05 indicates a significant relationship between the number of CHC visits and marker 

differences. A one way paired t-test was conducted to investigate the mean marker change 

between the number of CHC interactions defined as one, two, three, and four or more visits. A 

Bonferroni post hoc test was used to assess the significance of mean differences between these 

groups (Dunn, 1961). The resulting statistics provided evidence relevant to a proportional 

relationship between the number of CHC interactions and the magnitude of the changes in 

marker results. 

Data Interpretation 

For all three Specific Aims, a stepwise regression model was created to provide evidence 

relevant to each research question for each marker difference or health score difference. The 
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results were presented as a series of numbered models, one for the addition of each predictor, 

regardless of whether the predictor was considered a CV or the IV.  The first model identified the 

predictor that explained the greatest proportion of the variance in the DV.  The next model 

identified the predictor that explained the greatest proportion of the remaining variance in the 

DV.  This process was repeated until the addition of the next predictor resulted in a model that 

was no longer statistically significant.  This process generated from one to four models that 

revealed the statistically significant CVs, and the IV.  For each marker, a model summary table 

was constructed with the R, R
2
, R

2
 change, F-score change, and the significance of the change in 

F-score.  The R
2
 represents the proportion of the variance in the DV that is explained by the CV 

or IV. The change in R
2 

represents the change in variance explained with the addition of each 

CV, if applicable. The change in F-statistic and accompanying p value indicate the significance 

of each CV when added to the model, as well as the significance of the addition of the IV in the 

final model.  

For Aims 1and 2, an initial t-test determined if there was a statistically significant 

difference in the unadjusted means between the CHC and non-CHC groups. The ANCOVA 

generated for Specific Aims 1 and 2 determine if there were statistically significant differences in 

the mean changes in the DV between those who had CHC interactions and those who did not. 

The significance of the final model would also determine if the addition of the IV to the model 

explained a statistically significant amount of that difference.   

 For Specific Aim 3, the F-score change and accompanying p values only indicate the 

effect of the addition of each CV on the change in BMI or marker value and the number of CHC 

interactions. Since the number of CHC interactions is not a categorical level of measurement, an 

ANCOVA was not utilized to provide a statement of significance concerning the difference 
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between the IV groups.  However, ANCOVA was used to describe statistically significant 

relationships between marker difference and number of CHC visits.  Subjects were grouped 

based on the number of CHC interactions they had.  There was a group with one visit, another 

with two visits, one with three visits, and if needed, a group for four or more visits. Groups were 

created for each marker to ensure that each group was as equal in size as possible to preserve 

homogeneity of variance between the groups.  Differences in mean BMI and marker differences 

between groups was determined by a one-way ANOVA and pairwise comparisons.  In these 

situations, a summary table for the ANOVA and a table of paired comparisons, with a 

Bonferroni adjustment was presented.  

Chapter Summary 

 Chapter 3 discussed information on the study methodology. Information was provided 

concerning the population and sampling strategies employed, as well as details concerning how 

the data was acquired from two data courses and merged. Steps required for data cleaning were 

discussed, along with how the data was analyzed for each Specific Aim. Finally, Chapter 3 

concluded with an explanation of how the data was examined and interpreted for statistical 

significant findings.  

 

 

 

 

 

 

 



www.manaraa.com

 

 

66 

 

 

 

Chapter 4: Results 

 

 

Introduction 

 Chapter 4 describes the subject demographics generated for all dependent variables 

across all three Aims. In addition, sample selection for each biomarker is presented, along with 

sample exclusion criteria and resulting sample sizes. Next, Chapter 4 provides statistical 

evidence related to all three aims; diabetes related disease markers related to CHC interaction, 

diabetes related disease markers related to health scores, and diabetes related disease markers 

related to CHC frequency.   

Specific Aim 1 

The purpose of Aim 1 was to determine if there are statistically significant differences 

between subjects who do or do not participate in CHC interactions in their changes in blood 

glucose concentration, %HbA1c, blood 1,5-AG, blood insulin concentration, blood C-peptide 

concentration, blood proinsulin concentration, and BMI. Before statistical analysis was 

performed, the data set was cleaned and reviewed for univariate and multivariate outliers. The 

results of this process are presented for each marker, following the summary tables for the 

changes before and after adjustment for covariates.  

The changes in markers were determined by subtracting the subjects’ follow-up marker 

values from their initial marker values. A negative change indicates an improvement in glucose 

homeostasis, with the exception of 1,5-AG. For 1,5-AG, a positive change in marker value 
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indicates an improvement. Table 14 displays the mean changes in markers before adjustment for 

covariates. The group of subjects who interacted with CHCs showed significantly greater 

improvements in insulin, proinsulin, and BMI than the group with no CHC interactions. Both 

groups showed worsening of %HgbA1c and 1,5-AG.  However, the differences between the 

groups was not statistically significant.  

Table 14: Mean Changes in Markers of Glucose Homeostasis in Subjects with and without CHC 

Interactions, and their Statistical Significance 

Test CHC
a Non-

CHC
b F df p value 

Glucose 

(mg/dL) 
-0.57 0.08 

 1.195 
1 

0.275 

 

HbA1c 

(%) 
0.10 0.11 

 0.790 
1 

0.374 

 

Insulin 

(μU/mL) 
-0.78 -0.11 

 7.369 
1 

0.007 

 

C-Peptide 

(ng/mL) 
-0.11 -0.03 

 1.838 
1 

0.176 

 

Proinsulin 

(pmol/L) 
-1.17 0.23 

 4.163 
1 

0.042 

 

1,5-AG 

(µg/mL) 
-0.37 -1.29 

 1.300 
1 

0.256 

 

BMI -0.49 -0.20 
 33.878 

1 
<0.001 

 
a.)subjects who interacted with CHCs. b.)subjects who did not interact with CHCs 

To investigate the role of potential covariates on the mean change in the marker results, 

linear regression was used to evaluate the change in model significance with stepwise additions 

of the CVs age, sex, initial BMI, and initial marker value, and the IV, the use of CHCs. The 

results of this analysis, summarized in Table 15, revealed that the initial result for each marker 

was a significant covariate with CHC-patient interactions for the change in that marker. Other 

covariates influenced some, but not all markers. After adjusting for the covariates, only the 

change in BMI was significantly different between subjects with CHC interactions and those 

without CHC interactions.  
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Table 15: The Significance of CHC Interactions After Adjusting for Covariates on the Difference 

Between the Change in Biomarkers  

Test 

Mean 

Marker 

Change 

CHC 

Mean 

Marker 

Change 

Non-CHC 

Significant 

Covariates 

Significance of 

CHC 

Interactions 

(p value) 

Glucose 

(mg/dL) 
-0.57 0.08 

Initial glucose, Age, 

sex 
0.546 

HbA1c 

(%) 
0.10 0.11 Initial HbA1c 0.768 

1,5-AG 

(µg/mL) 
-0.37 -1.29 Initial 1,5-AG 0.379 

Insulin 

(μU/mL) 
-0.78 -0.11 

Initial insulin, BMI, 

sex 
0.112 

C-Peptide 

(ng/mL) 
-0.11 -0.03 

Initial C-peptide, 

BMI, Age 
0.453 

Proinsulin 

(pmol/L) 
-1.17 0.23 

Initial proinsulin, 

sex, age, BMI 
0.104 

BMI -0.49 -0.20 Initial BMI < 0.001 

 

Subject selection and results of analysis of the change in blood glucose 

concentration.  The initial number of available subjects was 171,614. Subjects that did 

not fast for at least 8 hours were excluded from the analysis of the change in glucose 

concentration. Subjects that did not have both an initial and a follow-up measurement of glucose 

concentration were also excluded. After these exclusions, 16,150 subjects remained with 992 

having CHC interactions and 15,158 without CHC interactions.  From this sample of subjects, 

one was removed for having a BMI < 15, and 100 were removed for having a BMI > 52.26. Z 

scores were generated to identify univariate outliers, yielding 124 subjects with changes in 

glucose concentration corresponding to z scores <-3.3, and 122 with a z score > 3.3. These 

subjects were eliminated prior to random selection of subjects without CHC interaction. Prior to 

randomization, 15,803 subjects remained with 969 having had CHC interactions and 14,834 

without CHC interactions. After randomization, 1944 total subjects remained. To eliminate 

multivariate outliers, a Mahalanobis Distance  (MD) was generated using study number as the 
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DV, and age, sex, initial BMI, CHC yes or no, initial insulin, and difference in BMI as the IVs. 

The cutoff for Chi Square table with 6 degrees of freedom is 22.46, indicating that a MD > 22.46 

would be considered an outlier (Pearson and Hartly, 1958). Based upon the MD generated, 49 

subjects showed multicollinearity with MD > 22.46.  These were removed from the dataset for 

prior to the statistical .  Table 16 describes the subject demographics for the glucose biomarker 

sample.  

Table 16: Demographics and Change in Glucose Concentrations for Subjects With and Without 

CHC Interactions 

CHC 

Interactions   

Initial 

Age 
Sex Initial BMI 

Initial  

Glucose 

(mg/dL) 

Change in 

Glucose 

(mg/dL) 

Yes        

n= 962 Mean 56.0 33% M 30.0 99.2 -0.57 

 SD 13.4 67% F 6.6 22.8 12.77 

No        

n=964 Mean 54.5 45% M 28.8 98.1 0.08 

 SD 14.2 55% F 6.0 24.2 13.31 

Total       

n =1926 Mean 55.2 39% M 29.4 98.8 -0.24 

 SD 13.8 61% F 6.3 23.5 13.04 

 

Statistical analysis using a t-test in SPSS revealed there was no statistically significant 

difference in the mean change in glucose concentration between subjects that utilized CHC 

interactions and those who do not with 95% confidence (p = 0.275).   

Covariates were entered stepwise into a linear regression model, with each subsequent 

model including the previous CVs and the newly entered CV.  The model summary table is 

shown in Table17. The final model includes initial glucose concentration, age, and sex as 

significant CVs and the IV. Initial glucose concentration accounted for 11.1 % of the variance in 

the model, while, age and sex accounted for 0.8 and 0.5 % respectively. After adjusting for initial 

glucose, age and sex, linear regression confirmed no statistically significant difference in the 
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mean change in glucose concentration between those who did (- 0.57 mg/dL), and those who did 

not (0.08 mg/dL), participate in CHC interactions, (p=0.546).  

Table 17: Significance of Covariates and CHC Interactions on the Mean Change in Glucose 

Concentration 

Model 
Model 

Components 
R R

2
 R

2 
Change F Change p value 

1 Initial Glucose .334 .111 .111 241.063 < 0.001 

2 
Initial Glucose, 

Age 
.346 .119 .008 17.797 < 0.001 

3 
Initial Glucose, 

Age, Sex 
.353 .125 .005 11.660 0.001 

4 

Initial Glucose 

Age 

 Sex 

 CHC Y/N 

.354 .125 .000 .365 0.546 

 

Subject selection and results of analysis of the change in %HbA1c.  The initial 

number of available subjects was 38,320. Fifty-four subjects had results below the AMR for 

either their initial or follow-up result, and were excluded. After excluding subjects that did not 

have both initial and follow-up results, 38,266 subjects remained, with 1,368 having had CHC 

interactions and 36,898 without CHC interactions. There were 290 subjects with BMI > 52.26 

and 1 case with BMI < 15. These subjects were also excluded.  Next, extreme cases of changes 

in marker results were identified, using the extreme values in the SPSS explore function. Values 

that fell outside 3 times the interquartile range (IQR) were deemed extreme values (Tukey, 

1977). One subject was excluded due to a change in %HgbA1c > -9, and 13 subjects were 

excluded due to a change in %HgbA1c > 7.  

Prior to randomization, 37, 954 subjects remained, 1,357 with CHC interactions, and 

36,597 without CHC interactions. To eliminate multicollinearity outliers, a MD was generated 
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using study number as the DV and age, sex, initial BMI, CHC yes or no, initial %HbA1c, and 

difference in BMI as the IVs. The cutoff for chi square table with 6 degrees of freedom is 22.46, 

indicating that a MD > 22.46 would be considered an outlier (Pearson and Hartly, 1958). Based 

upon the MD generated, 85 cases were deemed multivariate outliers and were excluded prior to 

the statistical analysis. Table 18 describes the subject demographics for the HbA1c biomarker 

sample.   

Table 18: Demographics and Change in %HbA1c for Subjects With and Without CHC 

Interactions  

CHC 

Interactions   

Initial 

Age 
Sex Initial BMI 

Initial 

HbA1c 

(%) 

Change in 

HbA1c (%) 

Yes        

n= 1315 Mean 45.3 45% M 30.4 5.60 0.10 

 SD 14.4 55% F 6.8 0.67 0.40 

No        

n=1295 Mean 55.9 46% M 29.5 5.56 0.11 

 SD 14.0 54% F 6.4 0.69 0.39 

Total       

n =2610 Mean 

SD 

50.6 

15.1 

46% M 

54% F 

29.9 

6.6 

5.58 

5.68 

0.10 

0.40  

 

Statistical analysis using a t-test in SPSS revealed no statistically significant difference in 

the mean change in %HbA1c between those that utilized CHCs and those who did not (p = 

0.374). The mean change in %HbA1c was positive for both the CHC (0.10%) and non-CHC 

(0.11%) groups, indicating an increase in average blood glucose concentration over time. 

Covariates were entered stepwise into a linear regression model, with each subsequent 

model including the previous CVs and the newly entered CV.  The model summary table is 

shown as Table 19. The only significant CV was the initial %HbA1c, which accounted for 15.4% 

of the variance. After adjusting for initial %HbA1c, linear regression confirmed 
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no statistically significant difference in the change in %HbA1c between those who did, and those 

who did not have CHC interactions (p=.768).   

Table 19: Significance of Covariates and CHC Interactions on the Mean Change in %HbA1c 

Model 
Model 

Components 
R R

2
 R

2 
Change F Change p value 

1 
Initial 

%HbA1c 
.392 .154 .154 473.571 < 0.001 

2 

Initial 

%HbA1c  
.392 .154 .000 0.87 0.768 

CHC Y/N      

 

Subject selection and results of analysis of the change in 1,5-AG concentration.  The 

initial number of available subjects for 1,5-AG was 150. Five subjects had results below the 

AMR and were excluded.  Only 145 subjects remained with 25 having CHC interactions and 120 

without CHC interactions. One subject had a BMI > 55.26 and was excluded. Z scores were used 

to identify outliers for the change in 1,5-AG. Two subjects had z scores greater than 3.3, 

corresponding to a change in 1,5-AG greater than 18 µg/mL. Randomization of the subjects 

without CHC interactions was not performed since the number of subjects with CHC interactions 

was > 10% of the number of subjects without CHC interactions. No multivariate outliers were 

identified. Table 20 describes the subject demographics for the 1,5-AG biomarker sample.   
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Table 20: Demographics and Change in 1,55-AG Concentrations for Subjects With and Without 

CHC Interactions 

CHC 

Interactions   
Start age Sex Initial BMI  

Initial  

1,5-AG 

(µg/mL) 

Change in 

1,5-AG 

(µg/mL) 

Yes        

n= 25 Mean 51.5 36% M 28.4 15.80 -0.37 

 SD 15.0 64% F 5.6 9.01 3.67 

No        

n=117 Mean 50.3 33% M 28.2 17.05 -1.29 

 SD 15.23 67% F 6.9 6.81 3.64 

Total 

n =142 

      

Mean 

SD 

50.6 

15.15 

34% M 

66% F 

28.3 

6.7 

16.83 

7.23 

-1.13 

3.7 

 

Statistical analysis using a t-test in SPSS revealed no statistically significant difference in 

the mean change in 1,5-AG between those with CHC interactions and those without CHC 

interactions ( p=0.256). 

Covariates were entered stepwise into a linear regression model, with each subsequent 

model including the previous CVs and the newly entered CV. The model summary table is 

shown as Table 21. The only significant CV was the initial 1,5-AG, which accounted for 19.2% 

of the variance. After adjusting for initial 1,5-AG, linear regression confirmed 

no statistically significant difference mean change in 1,5-AG between those who did, and those 

who did not have CHC interactions (p=0.379). 

Table 21: Significance of Covariates and CHC Interactions on the Mean Change in 1,5-AG 

Concentration 

Model 
Model 

Components 
R R

2
 R

2 
Change F Change p value 

1 Initial 1,5-AG .438 .192 .192 33.171 < 0.001 

2 
Initial 1,5-AG 

CHC Y/N 
.443 .196 .005 .779 0.379 
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Subject selection and results of analysis of the change in insulin concentration.  The 

initial number of available subjects for insulin was 123,401. Subjects that did not fast for at least 

8 hours were excluded from the analysis of the change in insulin concentration. Subjects that did 

not have both an initial and a follow-up measurement of insulin concentration were also 

excluded.  After exclusions, 15,629 subjects remained with, 1,031 having CHC interactions and 

14,344 without CHC interactions. From this sample, one was eliminated for having a BMI < 15 

and 105 for having a BMI < 52.26. Z scores were generated to identify univariate outliers, 

yielding 69 subjects with changes in insulin corresponding to z score >3.3 and 79 with a z score 

<-3.3. These subjects were eliminated prior to random selection of subjects without CHC 

interactions. Prior to randomization, 15,375 subjects remained, with 1031 having had CHC 

interactions, and 14,344 without CHC interactions. After randomization, 2023 subjects remained. 

To evaluate multivariate outliers, a MD was generated using study number as the DV and age, 

sex, initial BMI, CHC yes or no, initial insulin, and difference in BMI as the IVs. The cutoff for 

chi square table with 6 degrees of freedom is 22.46, indicating that a MD > 22.46 would be 

considered an outlier (Pearson and Hartly, 1958). Based upon the MD generated, 40 subjects 

showed to have multivariate outliers with MD > 22.46. These were removed and analysis ran. 

Table 22 describes the patient demographics for the insulin biomarker sample.   
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Table 22: Demographics and Change in Insulin Concentrations for Subjects With and Without 

CHC Interactions 

CHC  

Interactions  

Initial 

Age 
Sex Initial BMI  

Initial 

Insulin 

(μU/mL) 

Change in 

Insulin 

(μU/mL) 

Yes        

n= 973 Mean 55.6 34% M 30.0 11.9 -0.78 

 SD 13.8 66% F 6.4 7.5 5.65 

No        

n=1010 Mean 54.1 40% M 28.7 10.7 -0.11 

 SD 13.2 60% F 6.2 7.2 5.31 

Total       

n =1983 Mean 54.9 37% M 29.4 11.3 -0.45 

 SD 13.5 63% F 6.4 7.4 5.50 

 

Statistical analysis using a t-test in SPSS revealed a statistically significant difference in 

the mean change in inulin between those with CHC interactions and those without CHC 

interactions (p=0.007). 

Covariates were entered stepwise into a linear regression model, with each subsequent 

model including the previous CVs and the newly entered CV.  The model summary table is 

shown as Table 23.  

Table 23: Significance of Covariates and CHC Interactions on the Mean Change in Insulin 

Concentration 

Model 
Model 

Components 
R R

2
 R

2 
Change F Change p value 

1 Initial Insulin .401 .161 .161 380.081 < 0.001 

2 
Initial Insulin 

Initial BMI 
.426 .181 .020 48.825 < 0.001 

3 

Initial Insulin, 

Initial BMI 

Sex 

.431 .186 .005 11.369 0.001 

4 

Initial Insulin 

Initial BMI 

Sex 

CHC Y/N 

.432 .187 .001 2.523 0.112 
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The final model included initial insulin, initial BMI, and sex as CV and the IV, use of 

CHC.  Initial insulin accounted for 16.1% of the variance in the model, while initial BMI and sex 

accounted for 2% and 0.5% respectively. After adjusting for initial insulin, initial BMI and sex, 

linear regression confirmed no statistically significant difference was detected for the change in 

mean insulin between those who did ( -0.78 μU/mL), and those who did not (-0.11 μU/mL), 

participate in CHC interactions ( p = 0.112).  

Subject selection and results of analysis of the change in C-peptide concentration.  

The initial number of available subjects for C-peptide was 28,415. Subjects that did not fast for 

at least 8 hours were excluded from the analysis of chance in C-peptide concentration Subjects 

that did not have both an initial and a follow-up measurement of C-peptide concentration, and/or 

that had results outside the AMR, were also excluded. After these exclusions, 3,816 subjects 

remained with 414 having had CHC interactions and 3,402 that did not.  From this sample of 

subjects, one was eliminated for having a BMI < 15 and 76 were eliminated for having a BMI > 

52.26. Z scores were generated to identify univariate outliers, yielding 24 subjects with changes 

in C-peptide concentration corresponding to z score >3.3 and 26 with a z score <-3.3. Prior to 

random selection of the non-CHC groups, 3,739 subjects remained. After randomization, 832 

subjects remained.  The MD was generated using study number as the DV and age, sex, initial 

BMI, CHC yes or no, initial insulin, and difference in BMI as the IVs. The cutoff for chi square 

table with 6 degrees of freedom is 22.46, indicating that a MD > 22.46 would be considered an 

outlier (Pearson and Hartly, 1958). Based upon the MD generated, nine subjects were considered 

multivariate outliers with MD > 22.46. These were removed and analysis ran.  Table 24 

describes the patient demographics for the insulin biomarker sample. 
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Table 24: Demographics and Change in C-peptide Concentrations for Subjects With and Without 

CHC Interactions 

CHC 

Interactions   

Initial 

Age 
Sex Initial BMI  

Initial  

C-peptide 

(ng/mL) 

Change in 

C-peptide 

(ng/mL) 

Yes        

n= 401 Mean 56.1 32% M 30.2 3.02 -0.10 

 SD 14.0 68% F 6.2 1.34 0.83 

No        

n=422 Mean 52.5 41% M 29.2 2.76 -0.03 

 SD 14.6 59% F 6.5 1.26 0.73 

Total       

n =832 Mean 54.24 37% M 29.7 2.88 -0.07 

 SD 14.413 63% F 6.3 1.30 0.78 

 

Statistical analysis a t-test in using SPSS revealed no statistically significant difference in 

the mean change in C-peptide concentrations between subjects that utilized CHCs and those who 

did not (p = 0.176).  

Covariates were entered stepwise into a linear regression model, with each subsequent 

model including the previous CVs and the newly entered CV.  The model summary table is 

shown as Table 25. 

Table 25: Significance of Covariates and CHC Interactions on the Mean Change in C-peptide 

Concentration 

Model 
Model 

Components 
R R

2
 R

2 
Change F Change p value 

1 Initial C-peptide .351 .123 .123 115.356 < 0.001 

2 
Initial C-peptide  

Initial BMI 
.374 .140 .016 15.605 < 0.001 

3 

Initial C-peptide 

Initial BMI 

Start Age 

.380 .145 .005 4.839 0.028 

4 

Initial C-peptide 

Initial BMI 

Start Age 

CHC Y/N 

.381 .145 .001 .563 0.453 
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 The final model includes initial C-peptide concentration, initial BMI, and age as 

significant CVs, and the DV change in C-peptide. Initial C-peptide accounted for 12.3% of the 

variance in the model, while initial BMI and age accounted for 1.6% and 0.5% variance 

respectively. After adjusting for initial C-peptide, initial BMI, and age, linear regression 

confirmed no statistically significant difference was detected for the change in mean C-peptide 

between those who did (- 0.11 ng/mL), and those who did not (0.03 ng/mL), participate in CHC 

interactions (p = 0.453).   

Subject selection and results of analysis of the change in proinsulin concentration.  

The initial number of available subjects for proinsulin was 18,788. Subjects that did not fast for 

at least 8 hours were excluded from the analysis of change in proinsulin concentration. Subjects 

that did not have both an initial and follow-up measurement of proinsulin were also excluded. 

Additionally, 51 subjects had results below the AMR and were excluded. After these exclusions, 

2,356 subjects remained with 282 having CHC interactions and 2,074without CHC interactions. 

From this sample of subjects, 17 subjects were eliminated for BMI < 52.26. Z scores were 

generated to identify outliers yielding 18 subjects with change in proinsulin concentration 

corresponding to a z scores >3.3, and 18 with z scores < -3.3. These subjects were eliminated 

prior to random selection of subjects without CHC interactions. After randomizations, 523 

subjects remained.  To eliminate multivariate outliers, a MD was generated using study number 

as the DV and age, sex, initial BMI, the number of CHC Interactions, initial proinsulin, and 

difference in BMI as the IVs. The cutoff for chi square table with 6 degrees of freedom is 22.46, 

indicating that a MD > 22.46 would be considered an outlier (Pearson and Hartly, 1958).  Based 

upon the MD generated, 11 subjects were considered multivariate outliers with MD > 22.46. 
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These 11 subjects were removed and analysis ran. Table 26 describes the patient demographics 

for the proinsulin biomarker sample. 

Table 26: Demographics and Change in Proinsulin Concentrations for Subjects With and 

Without CHC Interactions 

CHC 

Interactions   

Initial 

Age 
Sex Initial BMI  

Initial 

Proinsulin 

(pmol/L) 

Change in 

Proinsulin 

(pmol/L) 

Yes        

n= 274 Mean 55.5 33% M 30.1 14.72 -1.17 

 SD 14.4 67% F 6.2 10.47 7.92 

No        

n=249 Mean 53.0 44% M 28.9 13.28 0.23 

 SD 14.8 56% F 6.2 9.42 7.71 

Total       

n =523 Mean 54.3 38%M 29.5 14.03 -0.50 

 SD 14.6 62% F 6.2 10.00 7.84 

 

Statistical analysis using a t-test in SPSS revealed a statistically significant difference in 

the mean change in proinsulin concentration between those that utilized CHC interactions and 

those who did not (p = 0.042).  

Covariates were entered stepwise into a linear regression model, with each subsequent 

model including the previous CVs and the newly entered CV.  The model summary table is 

shown in Table 27. The final model includes, initial proinsulin, sex, age, and initial BMI as 

significant CVs, and the DV change in proinsulin.  Initial proinsulin concentration accounted for 

11.4% of the variance in the model, while sex, age and initial BMI accounted for 1.3, 0.9 and 

0.7% respectively. After adjusting for initial proinsulin, sex, age, and initial BMI, linear 

regression confirmed no statistically significant difference was detected for the change in 

proinsulin concentration between those who did (-1.17 pmol/L), and  those who did not (0.23 

pmol/L), participate in CHC interactions (p = 0.104).  
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Table 27: Significance of Covariates and CHC Interactions on the Mean Change in Proinsulin 

Concentration 

Model Model Components R R
2
 R

2 
Change F Change p value 

1 Initial Proinsulin .338 .114 .114 67.084 < 0.001 

2 
Initial Proinsulin 

Sex 
.357 .127 .013 7.983 0.005 

3 

Initial Proinsulin 

Sex 

Start Age 

.370 .137 .009 5.605 0.018 

4 

Initial Proinsulin 

Sex 

Start Age 

Initial BMI 

.379 .143 .007 4.042 0.045 

5 

Initial Proinsulin 

Sex 

Start Age 

Initial BMI 

CHC Y/N 

.385 .148 .004 2.654 0.104 

 

Subject selection and results of analysis of the change in BMI.  Subjects that did not 

have both an initial and follow-up BMI were excluded. After exclusion, 88,747 subjects 

remained for BMI analysis with 4,029 having CHC interactions and 84,718 without CHC 

interactions. For BMI, randomization occurred before univariate outlier investigation, generating 

8072 total subjects. From this sample, 77 subjects were removed for having a BMI > 52.26.  Z 

scores were generated to identify univariate outliers, yielding 74 subjects with a change in BMI 

corresponding to a z score < -3.3, and 67 with a z score > 3.3. These subjects were removed, 

leaving 7854 subjects for analysis.  

To eliminate multivariate outliers, MD was generated using study number as the DV and 

age, sex, initial BMI, CHC yes or no, and difference in BMI as the IVs. The cutoff for chi square 

table with 5 degrees of freedom is 20.52, indicating that a MD > 20.52 would be considered an 

outlier (Pearson and Hartly, 1958).  Based on the MD generated, 49 subjects were considered 
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multivariate outliers with MD > 20.52. These 49 subjects were removed and analysis ran. Table 

28 describes the patient demographics for the proinsulin biomarker sample.  

Table 28: Demographics and Change in BMI for Subjects With and Without CHC Interactions 

CHC 

Interactions   

Initial  

Age 
Sex Initial BMI  

Change in 

BMI  

Yes       

n= 3893 Mean 57.9 52% M 30.0 -0.49 

 SD 13.5 48% F 6.5 2.22 

No       

n=3912 Mean 56.7 44% M 29.2 -0.20 

 SD 14.0 56% F 6.2 2.16 

Total      

n = 7805 Mean 57.3 48% M 29.6 -0.34 

 SD 13.8 52% F 6.4 2.21 

 

Statistical analysis using a t-test in SPSS revealed a statistically significant difference in 

the mean change in BMI between those that utilized CHC interactions and those who did not (p 

< 0.001).   

Covariates were entered stepwise into a linear regression model, with each subsequent 

model including the previous VCs and the newly entered CV.  The model summary table is 

shown as Table 29.  

Table 29: Significance of Covariates and CHC Interactions on the Mean Change in BMI 

Model 
Model 

Components 
R R

2
 

R
2 

Change 
F Change p value 

1 Initial BMI .235
a
 .055 .055 456.735 < 0.001 

2 
Initial BMI 

CHC Y/N 
.241

b
 .058 .003 21.938 < 0.001 

 

The final model only included initial BMI as a significant CV, and the DV change in 

BMI. Initial BMI accounted for 5.5% of the variance explained. After adjusting for initial BMI, 

linear regression confirmed a statistically significant difference was detected for the change in 
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mean BMI between those who did (-0.49), and those who did not (- 0.20, participate in CHC 

interactions (p = < 0.001).  

Specific Aim 2 

The purpose of Specific Aim 2 was to determine if statistically significant differences 

exist in the change in glucose, %HgbA1c, and  BMI health scores between subjects who did and 

those who did not interact with CHCs. Before statistical analysis was performed, the data set was 

reviewed for univariate and multivariate outliers. The follow section presents the results of data 

cleaning and subject exclusion for each marker and BMI. 

For Specific Aim 2, regression was performed using the change in health score as the 

DV. The IV was the use or withholding of CHC interaction or no interaction, with BMI, sex, and 

age at the subjects’ initial visit as potential CVs. The change in health score was determined by 

subtracting the subjects’ marker health score at their follow-up blood draw from their marker 

health score at their initial blood draw. A negative change corresponds to an improvement in the 

health score for that particular marker, while a positive change corresponds to a worsening of the 

health score for that marker. The mean change in health score for %HbA1c, glucose, and BMI 

was calculated for both the CHC and non-CHC groups. Table 30 describes marker means for 

each group and the unadjusted t-test results of the comparison of change in health scores.  

Table 30: Mean Changes in Glucose, %HbA1c, and BMI Health Scores in Subjects with and 

without CHC Interactions, and their Statistical Significance  

Test CHC
a Non-

CHC
a F df p value 

Glucose 

 
-0.2 0.02 

3.562 
1 0.059 

HbA1c 

 
0.09 0.10 

0.081 
1 0.776 

BMI -0.07 -0.04 12.911 1 <0.001 
a.)subjects who interacted with CHCs. b.)subjects who did not interact with CHCs 
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Table 31 describes the ANCOVA linear regression which revealed the significant CVs 

for each marker, as well as the significance of the CHC and non-CHC groups differences.   

Table 31: The Significance of CHC Interactions After Adjusting for Covariates on the Difference 

Between the Change in Glucose, HbA1c, and BMI  

Test 

Mean Health 

Score Change  

CHC 

Mean 

 Health Score 

Change 

Non-CHC 

Significant CVs  

Significance of 

CHC 

Interactions  

(p value) 

Glucose -0.2 0.02 
Initial glucose, 

age, sex 
0.165 

HbA1c 0.09 0.10 Initial HbA1c 0.949 

BMI -0.07 -0.04 Initial BMI < 0.001 

 

Subject selection and results of analysis of the change in glucose health score.  For 

Specific Aim 2, the same 1944 subjects selected for the analysis of the changes in glucose 

concentration were examined for the changes in glucose health score. Twenty-five of these 

subjects exhibited a MD > 22.46, and were excluded from the analysis. The demographics of the 

subjects utilized for the analysis are presented in Table 32. 

Table 32: Demographics and Change in Glucose Health Score for Subjects With and Without 

CHC Interactions  

CHC 

Interactions  

Initial 

Age 
Sex 

Initial 

BMI 

Initial 

Glucose 

(mg/dL) 

Initial 

Health 

Score 

Change 

in Health 

Score 

Yes         

n=  958 Mean 56.1 33% M 30.1 97.9 0.40 -0.02 

 SD 13.4 67% F 6.6 17.5 0.62 0.54 

No         

n= 961 Mean 54.6 45% M 28.7 96.8 0.36 0.02 

 SD 14.2 55% F 5.9 18.0 0.60 0.52 

Total        

n = 1919 Mean 55.3 39% M 29.4 97.4 0.38 0.00 

 SD 13.8 61% F 6.3 17.8 0.61 0.53 

 

Statistical analysis using a t-test in SPSS revealed no statistically significant difference in 

the mean change in glucose health score for those that utilized CHC interactions and those who 
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did not (p = 0.059). Covariates were entered stepwise into a linear regression model, with each 

subsequent model including the previous CVs and the newly entered CV. This analysis revealed 

that initial glucose, age, and sex were significant CVs. Initial glucose accounted for 7.4% of the 

variance, while age and sex explained 0.6% and 0.4% of the variance respectively. Engaging or 

not engaging in CHC interactions only accounted for 0.1% of the variance. After adjusting for 

initial glucose, age, and sex, linear regression confirmed that there was no statistically significant 

difference in the change in mean glucose health score between those who did (-0.2), and those 

who did not (0.02) participate in CHC interactions (p = 0.165). The model summary is shown in 

Table 33. The final model includes all significant CVs and the DV.    

Table 33: Significance of Covariates and CHC Interactions on the Mean Change in Glucose 

Health Score 

Model 
Model 

Components 
R R

2
 R

2 
Change F Change p value 

1 Initial Glucose .271 .074 .074 152.373 < 0.001 

2 
Initial Glucose 

Start Age 
.283 .080 .006 13.426 < 0.001 

3 

Initial Glucose 

Start Age 

Sex 

.290 .084 .004 8.229 0.004 

4 

Initial Glucose 

Start Age 

Sex 

CHC Y/N 

.291 .085 .001 1.927 0.165 

 

Based upon their assigned health score for glucose concentration, subjects were classified 

as normal, prediabetic, or diabetic. The distribution of these classifications between those who 

did or did not have CHC interactions in shown in Table 34. For the group with CHC interactions, 

the follow-up glucose health score showed a decrease in the number of subjects classified as 

diabetic by 17, an increase in the number classified as prediabetic by 11, and an increase in the 
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number classified as normal by six. For the group without CHC interactions, there was no 

change in the number of subjects classified as diabetic, and an increase of 21 classified as 

prediabetic.  

Table 34: Classification of Subjects by Glucose Health Score 

 Initial Classification  Follow-up Classification 

 
Normal Prediabetic Diabetic Normal Prediabetic Diabetic 

CHC 

Interactions 
644 246 68 650 257 51 

No CHC 

Interactions 
682 216 63 661 237 63 

Total 1326 462 131 1311 494 114 

 

Subject selection and results of analysis of the change in HbA1c health score.  For 

Specific Aim 2, the same 2685 subjects selected for the analysis of the changes in %HgbA1c 

were examined for the changes in %HgbA1c health score.  There were 45 subjects with a MD > 

22.46. These subjects were excluded from the analysis. The demographics of the subjects utilized 

for the analysis are presented in Table 35. 

Table 35: Demographics and Change in HbA1c Health Score for Subjects With and Without 

CHC Interactions 

CHC 

Interactions  

Initial 

Age 
Sex 

Initial 

BMI 

Initial 

HbA1c 

Initial 

Health 

Score 

Change 

in Health 

Score 

Yes         

n=  1330 Mean 45.3 45% M 30.4 5.6 0.43 0.09 

 SD 14.4 55% F 6.8 0.75 0.66 0.48 

No         

n= 1310 Mean 55.9 46% M 29.5 5.6 0.42 0.10 

 SD 14.0 54% F 6.3 0.75 0.66 0.47 

Total        

n = 2640 Mean 50.58 45% M 30.0 5.6 0.43 0.10 

 SD 15.1 55% F 6.6 0.75 0.66 0.47 
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Statistical analysis using a t-test in SPSS revealed no statistically significant difference in 

the mean change in %HbA1c health score for those that utilized CHC interactions and those who 

did not (p = 0.776). Covariates were entered stepwise into a linear regression model, with each 

subsequent model including the previous VCs and the newly entered CV. Only initial %HbA1c 

was a statistically significant CV in the best fit model, accounting for 1.8% of the variance. After 

adjusting for initial %HbA1c, linear regression confirmed no statistically significant difference in 

the change in mean %HbA1c health score between those who did (0.09), and those who did not 

(0.10) participate in CHC interactions (p = 0.949). The model summary is shown in Table 36. 

The final model includes all significant CVs and the DV. 

Table 36: Significance of Covariates and CHC Interactions on the Mean Change in HbA1c 

Health Score 

Model 
Model 

Components 
R R

2
 R

2 
 Change F Change p value 

1 Initial HbA1c .134 .018 .018 48.568 < 0.001 

2 
Initial HbA1c 

CHC Y/N 
.134 .018 .000 .004 0.949 

 

Based upon their assigned health score for %HgbA1c, subjects were classified as normal, 

prediabetic, or diabetic. The distribution of these classifications between those who did or did not 

have CHC interactions in shown in Table 37.  

Table 37: Classification of Subjects by %HgbA1c Health Score 

 Initial Classification Follow-up Classification 

 
Normal Prediabetic Diabetic Normal Prediabetic Diabetic 

CHC 

Interactions 
885 316 129 761 439 130 

No CHC 

Interactions 
884 303 123 778 385 147 

Total 1769 619 252 1539 824  277 
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For the group with CHC interactions, the follow-up glucose health score showed a 

decrease in the number of subjects classified as normal by 124, with an increase in the number 

classified as prediabetic by 123. For the group without CHC interactions, there was a decrease in 

the number of subjects classified as normal by 106, with increases of 82 classified as prediabetic 

and 24 classified as diabetic. 

Subject selection and results of analysis of the change in BMI health score.  For 

Specific Aim 2, the same 7854 subjects selected for the analysis of the changes in BMI were 

examined for the changes in BMI health score. There were 61 subjects with a MD > 20.52. These 

61 subjects were excluded prior to analysis. The demographics of the subjects utilized for the 

analysis are presented in Table 38. 

Table 38: Demographics and Change in BMI Health Score for Subjects With and Without CHC 

Interactions 

CHC 

Interactions  

Initial 

Age 
Sex 

Initial 

BMI 

Initial 

Classification 

Change in 

Classification 

Yes       

n=  3900 Mean 57.9 52% M 30.0 1.26 -0.07 

 SD 13.5 48% F 6.6 0.79 0.42 

No       

n= 3893 Mean 56.7 44% M 29.2 1.17 -0.04 

 SD 14.1 456% F 6.3 0.79 0.41 

Total       

n = 7793 Mean 57.3 48% M 29.6 1.21 -0.05 

 SD 13.8 52% F 6.4 0.80 0.42 

 

Statistical analysis using a t-test in SPSS revealed that there was a significant difference 

in the mean change in BMI health scores between subjects who had CHC interactions and those 

who did not (p < 0.001). Covariates were entered stepwise into a linear regression model, with 

each subsequent model including the previous CVs and the newly entered CV. Initial BMI was 

the only significant CV, accounting for 0.4% of the variance, while CHC interactions accounted 

for 0.6%. After adjusting for initial BMI, a statistically significant difference in the change in 
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mean BMI health scores remained, between those who did (-0.07), and those who did not (-0.04), 

participate in CHC interactions (p =0.001). The model summary table is shown as Table 39. The 

final model includes all significant CVs and the DV. 

Table 39: Significance of Covariates and CHC Interactions on the Mean Change in BMI Health 

Score 

Model 
Model 

Components 
R R

2
 R

2 
Change F Change p value 

1 Initial BMI .066 .004 .004 33.800 < 0.001 

2 
Initial BMI 

CHC Y/N 

.075 .006 .001 10.562 < 0.001 

 

Based upon their assigned health score for BMI, subjects were classified as normal, 

overweight, or obese. The distribution of these classifications between those who did or did not 

have CHC interactions in shown in Table 40. 

Table 40: Classification of Subjects by BMI Health Score 

 Initial Classification Follow-up Classification 

 
Normal Overweight Obese Normal Overweight Obese 

CHC 

Interactions 
840 1222 1838 945 1286 1669 

No CHC 

Interactions 
935 1345 1613 987 1383 1523 

Total      1775 2567 3451 1932  2669   3192 

 

 For the group with CHC interactions, the follow-up BMI health score showed a decrease 

in the number of subjects classified as obese by 169, with an increase in the number classified as 

normal by 105, and an increase in the number classified as overweight by 64. For the group 

without CHC interactions, there was a decrease in the number of subjects classified as obese by 

90, with increases of 52 classified as normal and 38 classified as diabetic. 
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Specific Aim 3 

The purpose of Aim 3 was to determine the relationship between the number of CHC 

interactions and magnitude of the change in blood glucose concentration, %HbA1c, blood 1,5-

AG, blood insulin concentration, blood C-peptide concentration, blood proinsulin concentration, 

and BMI. Subjects were grouped according to whether they had 1, 2, 3, or >4 CHC interactions. 

Before statistical analysis was performed, the data set was reviewed for univariate and 

multivariate outliers. The sections following Table 41 describe how subjects were eliminated, 

and the results of data cleaning for each marker and BMI. 

Linear regression was performed using the change in each marker as the DV, and the 

number of CHC interactions as the IV. A negative change in mean marker values would indicate 

an improvement in that particular marker, with the exception of 1,5-AG. As with Specific Aims 

1 and 2, initial BMI, sex, and age at the subject’s initial visit were used as potential CVs. Linier 

regression provided an ANCOVA table. However, since the number of CHC visits were an 

interval level of measurement, statements of significance of biomarker difference between those 

who and did not utilize CHCs could not be provided.  Linear regression could only determine the 

significance of the number of CHC interactions on the change in the DV. In addition to linear 

regression, the number of interactions were considered as a categorical variable and the 

significance of the differences in the changes in marker results between the number of CHC 

interactions was tested using ANOVA followed by a paired one way t-test.  Results are reported 

as Bonferroni post hoc mean comparisons to investigate the mean differences between the CHC 

interaction groups. Table 41 provides a summary of results and between-group differences. 
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Table 41: The Significance of the Number of CHC Interactions on the Change in Markers of 

Glucose Homeostasis 

Marker 
Best Model Including 

Significant CVs 

Significance of the 

Number of CHC 

Interactions  

(p value) 

Significance of 

Between Number of 

CHC Interaction 

Differences 

(p value) 

Glucose 

(mg/dL) 

Initial Glucose 

Start Age 

Sex 

Initial BMI 

# of CHC Interactions 

No 

p = 0.971 

No 

p > 0.05 

HbA1c 

(%) 

Initial %HbA1c 

# of CHC Interactions 

Yes 

p = 0.029 

No 

p > 0.05 

1,5-AG 

(µg/mL) 

Initial 1,5-AG 

# of CHC Interactions 

No 

p = 0.229 

No 

p > 0.05 

Insulin 

(μU/mL) 

Initial Insulin 

Initial BMI 

Sex 

# of CHC Interactions 

Yes 

p = 0.010 

No 

p > 0.05 

C-Peptide 

(ng/mL) 

Initial C-peptide 

Initial BMI 

Start Age 

# of CHC Interactions 

No 

p = 0.435 

Yes  

Between Groups 1-2 

P = 0.035 

Proinsulin 

(pmol/L) 

Initial Proinsulin 

# of CHC Interactions 

No 

p = 0.976 

No 

p > 0.05 

BMI 
Initial BMI 

# of CHC Interactions 

Yes 

p < 0.001 

Between Groups 1-4 

p < 0.001 

 

Subject selection and results of analysis of the change in glucose concentration by 

number of CHC interactions.  There were 969 subjects that had at least one CHC 

interaction.  Mahalanobis distances were generated, replacing only CHC Y/N with the number of 

interactions. Thirty-one subjects were identified with a MD > 22.46. These subjects were 

excluded prior to the statistical analyses. To ensure that all CHC interaction groups had at least 

10% of the number of subjects in the largest group, subjects with four or more interactions were 

combined into one group. Table 42 details CHC interaction group demographics and change in 

glucose concentration.  
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Table 42: Demographics and Change in Glucose Concentration for Subjects by Number of CHC 

Interactions 

CHC 

Interactions  

Initial 

Age 
Sex Initial BMI 

Initial 

Glucose 

(mg/dL) 

Change in 

Glucose 

(mg/dL) 

1       

n= 522 Mean 54.6 34% M 29.4 96.9 -0.51 

 SD 13.4 66% F 6.4 16.0 11.70 

2       

n= 219 Mean 56.8 34% M 30.0 98.4 -1.45 

 SD 13.0 66% F 6.4 18.0 13.30 

3       

n= 90 Mean 57.4 26% M 31.0 95.9 0.41 

 SD 13.2 74% F 6.8 14.3 12.46 

4 or more       

n= 107 Mean 59.4 30% M 32.0 99.0 -0.44 

 SD 13.6 70% F 7.2 18.4 13.10 

Total       

n = 938 Mean 55.9 33%M 30.0 97.4 -0.64 

 SD 13.4 67% F 6.6 16.6 12.30 

 

Linear regression revealed no significant relationship between the mean change in 

glucose concentration and the number of CHC interactions. Covariates were entered stepwise 

into the linear regression model, with each subsequent model including the previous CVs and the 

newly entered CV.  The model summary is shown in Table 43. The final model includes all 

significant CVs and the DV. For the change in glucose, the initial glucose accounted for 24.8% 

of the variance. Age, sex and initial BMI explained 1.6%, 0.8 and 0.3% of the variance 

respectively. The number of CHC interactions did not statistically account for any of the 

variance. After adjusting for initial glucose, age, sex, and initial BMI, there was 

no statistically significant relationship between the mean change in glucose and the number of 

CHC interactions (p = 0.971).  
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Table 43: The Effects of Covariates and the Number of CHC interactions on the Significance of 

Mean Change in Glucose  

Model Model Components R R
2
 

R
2  

Change 

F  

Change 
p value 

1 Initial Glucose .498 .248 .248 308.817 < 0.001 

2 
Initial Glucose 

Start Age 
.514 .264 .016 20.222 < 0.001 

3 

Initial Glucose 

Start Age 

Sex 

.522 .272 .008 10.627 0.001 

4 

Initial Glucose 

Start Age 

Sex 

Initial BMI 

.525 .276 .003 4.471 0.035 

5 

Initial Glucose 

Start Age 

Sex 

Initial BMI 

# of CHC Interactions 

.525 .276 .000 .001 0.971 

 

Graphical representation (Figure 3) suggests a decrease in mean change in glucose 

between CHC interaction groups one and two, but an increase with CHC interaction group three. 
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Figure 3: Mean Change in Glucose by Number of CHC Interactions 
Error bars represent 95% Confidence Intervals 

A Bonferroni multiple comparison table (Table 44) confirms that there was no 

statistically significant difference in the mean change in glucose between CHC interactions 

groups, (p < 0.05).   

Table 44: Bonferroni Multiple Comparison for Glucose and Number of CHC Interactions 

# of CHC 

Interactions 

Additional 

Visit 

Mean 

Difference 

Standard 

Error 
p value 

95% CI of the 

Difference 

Upper Lower 

1 2.00 .939 0.991 1.000 3.56 -1.68 

3.00 -.925 1.406 1.000 2.79 -4.64 

4.00 -.074 1.307 1.000 3.38 -3.53 

2 1.00 -.939 0.991 1.000 1.68 -3.56 

3.00 -1.863 1.542 1.000 2.21 -5.94 

4.00 -1.013 1.452 1.000 2.83 -4.85 

3 1.00 .925 1.406 1.000 4.64 -2.79 

2.00 1.863 1.542 1.000 5.94 -2.21 

4.00 .850 1.761 1.000 5.51 -3.81 

4 1.00 .074 1.307 1.000 3.53 -3.38 

2.00 1.013 1.452 1.000 4.85 -2.83 

3.00 -.850 1.761 1.000 3.81 -5.51 
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Subject selection and results of analysis of the change in %HbA1c by number of 

CHC interactions.  There were only 1,357 subjects that had at least one CHC 

interactions.  Mahalanobis distance was generated replacing only CHC Y/N with the number of 

CHC Interactions. Fifty-one subjects were identified with a MD > 22.46. These subjects were 

excluded prior to the statistical analysis. To ensure all groups had at least 10% of the largest 

group, subjects with more than four interactions were combined in to one group, four or more. 

Table 45 details CHC interaction group demographics and change in %HbA1c. 

Table 45: Demographics and Change in %HbA1c for Subjects by CHC Number of Interactions 

CHC 

Interactions  

Initial 

Age 
Sex Initial BMI 

Initial 

HbA1c 

(%) 

Change in 

HbA1c (%) 

1       

n= 736 Mean 45.2 42% M 29.4 5.54 0.12 

 SD 14.3 58% F 6.6 0.65 0.37 

2       

n=298 Mean 45.2 48% M 31.3 5.71 0.08 

 SD 14.2 52% F 6.8 0.81 0.42 

3       

n=124 Mean 45.7 44% M 31.0 5.69 0.03 

 SD 14.5 56% F 6.7 0.68 0.43 

4 or more       

n=148 Mean 46.2 55% M 32.9 5.61 0.04 

 SD 15.5 45% F 7.2 0.67 0.46 

Total       

n =1306 Mean 45.3 45%M 30.4 5.61 0.09 

 SD 14.4 55% F 6.8 0.70 0.40 

 

Linear regression revealed there was a significant relationship between the mean change 

in %HbA1c and the number of CHC interactions.  

  Covariates were entered stepwise into the linear regression model, with each subsequent 

model including the previous CVs and the newly entered CV.  The model summary is shown in 

Table 46. The final model includes all significant CVs and the DV. For Change in HbA1c, initial 

HbA1c accounted for 20.1% of the variance explained. The addition of the number of CHC 
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interactions into the model was also significant, explaining 0.3 % of variance. After adjusting for 

initial %HbA1c, analysis confirmed a statistically significant relationship between the mean 

change in %HbA1c and the number of CHC interactions (p = 0.029).  

Table 46: The Effects of Covariates and the Number of CHC interactions on the Significance of 

Mean Change in %HbA1c 

Model Model Components R R
2
 

R
2  

Change 
F Change p value 

1 Initial HbA1c .448 .201 .201 327.027 < 0.001 

2 
Initial HbA1c 

# of CHC Interactions 
.451 .203 .003 4.752 0.029 

 

Graphical representation (Figure 4) suggests a decrease in the mean change in HbC1a as 

the number of CHC interactions increases until three CHC interactions.  

 
Figure 4: Mean Change in HbA1c by Number of CHC Interactions 
Error bars represent 95% Confidence Intervals 
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A Bonferroni multiple comparison table (Table 47) confirms that there was no 

statistically significant difference in the mean change in HbA1c between CHC interactions 

groups, (p >0.05).   

Table 47: Bonferroni Multiple Comparison for HbA1c and Number of CHC Interactions  

# of CHC 

Interactions 

Additional 

Visit 

Mean 

Difference 

Standard 

Error 
p value 

95% CI of the 

Difference 

Upper Lower 

1 2.00 .039 .028 0.952 0.111 -0.034 

3.00 .093 .039 0.105 0.196 -0.010 

4.00 .079 .036 0.177 0.175 -0.017 

2 1.00 -.039 .028 0.952 0.034 -0.112 

3.00 .054 .043 1.000 0.167 -0.059 

4.00 .040 .040 1.000 0.147 -0.067 

3 1.00 -.093 .039 0.105 0.010 -0.196 

2.00 -.054 .043 1.000 0.060 -0.167 

4.00 -.014 .049 1.000 0.115 -0.143 

4 1.00 -.079 .036 0.177 0.017 -0.174 

2.00 -.040 .040 1.000 0.067 -0.147 

3.00 .014 .049 1.000 0.143 -0.115 

 

 

Subject selection and results of analysis of the change in 1,5-AG by number of CHC 

interactions.  There were 25 subjects that had at least one CHC interactions.  

Mahalanobis distance was generated replacing only CHC Y/N with the number of CHC 

Interactions. To ensure all groups had at least 10% of the largest group subjects with three or 

more interactions were combined. Table 48 describes the demographics and change in 1,5-AG 

concentration for each CHC interaction group.  
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Table 48: Demographics and Change in 1,5-AG Concentration for Subjects by Number of CHC 

Interactions 

CHC 

Interactions  

Initial 

Age 
Sex Initial BMI 

Initial 1,5-

AG 

(µg/mL) 

Change in 

1,5-AG 

(µg/mL) 

1       

n= 12 Mean 45.2 33% M 26.2 16.34 -0.98 

 SD 14.6 67% F 5.9 8.57 2.10 

2       

n=7 Mean 52.9 29% M 30.5 14.63 -0.80 

 SD 14.3 71% F 5.9 7.02 1.01 

3       

n=6 Mean 62.8 50% M 30.3 16.07 1.33 

 SD 10.8 50% F 3.1 12.91 7.01 

Total       

n =25 Mean 51.6 36%M 28.4 15.80 -0.37 

 SD 15.0 64% F 5.6 9.02 3.67 

 

Linear regression revealed no significant relationship between the mean change in 1,5-

AG concentration and the number of CHC interactions.  

Covariates were entered stepwise into a linear regression model, with each subsequent 

model including the previous CVs and the newly entered CV.  The model summary table is 

shown as Table 49. The final model includes all significant CVs and the DV. For change in 1,5-

AG, initial 1,5-AG accounted for 21.8% of the variance explained. The number of CHC 

interactions did not statistically account for any variance explained. After adjusting for initial 

1,5AG, there was no statistically significant relationship between the mean change in glucose 

and the number of CHC interactions (p = 0.229).  
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Table 49: The Effects of Covariates and the Number of CHC interactions on the Significance of 

Mean Change in 1,5-AG 

Model Model Components R R
2
 

R
2 

 
Change 

F 

Change 
p value 

1 Initial 1,5-AG .467 .218 .218 6.427 0.018 

2 
Initial 1,5-AG 

# of CHC Interactions 
.519 .269 .051 1.530 0.229 

 

 Graphical representation (Figure 5) suggests a trending increase in the mean change of 

1,5-AG between CHC interaction groups one and three.  

 
Figure 5: Mean Change in 1,5-AG by Number of CHC Interactions 
Error bars represent 95% Confidence Intervals 

 

A Bonferroni multiple comparison table (Table 50) confirms no statistically significant 

difference in the mean change in 1,5-AG between CHC interactions groups, (p >0.05).  
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Table 50: Bonferroni Multiple Comparison for 1,5-AG and Number of CHC Interactions 

# of CHC 

Interaction 

Additional 

Visit 

Mean 

Difference 

Standard 

Error 
p value 

95% CI of the 

Difference 

Upper Lower 

1 2.00 -.171 1.759 1.000 4.386 -4.728 

3.00 -2.305 1.849 0.677 2.486 -7.096 

2 1.00 0.171 1.759 1.000 4.728 -4.386 

3.00 -2.134 2.057 0.932 3.196 -7.465 

3 1.00 2.305 1.849 0.677 7.096 -2.486 

2.00 2.134 2.057 0.932 7.465 -3.196 

 

  

Subject selection and results of analysis of the change in insulin concentration by 

number of CHC interactions.  For insulin, there were 1,031 subjects that had at least 

one CHC interactions. Mahalanobis distance was generated replacing only CHC Y/N with the 

number of CHC Interactions. Thirty-one subjects were identified with a MD > 22.46. These 

subjects were removed prior to the statistical analysis.  To ensure all groups had at least 10% of 

the largest group, subjects with more than four interactions were combined in to one group, four 

or more. Table 51 describes the demographics and change in insulin concentration for each CHC 

interaction group. 
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Table 51: Demographics and Change in Insulin Concentration for Subjects by Number of CHC 

Interactions 

CHC 

Interactions  

Initial 

Age 
Sex Initial BMI 

Initial 

Insulin )  

(μU/mL) 

Change in 

Insulin 

(μU/mL) 

1       

N= 577 Mean 54.4 36% M 29.6 11.6 -0.28 

 SD 13.1 64% F 6.38 7.7 5.93 

2       

N =288 Mean 56.4 36% M 29.8 12.1 -1.11 

 SD 13.2 64% F 6.08 6.7 5.92 

3       

N =105 Mean 57.6 27% M 31.0 12.6 -1.49 

 SD 13.0 73% F 6.89 8.7 4.61 

4 or more       

N =110 Mean 57.8 30% M 32.1 12.8 -1.50 

 SD 13.3 70% F 6.55 7.2 5.36 

Total       

N =1000 Mean 55.5 34%M 30.0 11.9 -0.73 

 SD 13.2 66% F 6.43 7.5 5.76 

 

Linear regression revealed a significant relationship between the mean change in insulin 

concentration and the number of CHC interactions. Covariates were entered stepwise into a 

linear regression model, with each subsequent model including the previous CVs and the newly 

entered CV.  The model summary table is shown as Table 52. The final model includes all 

significant CVs and the DV. For insulin, initial insulin, accounted for 17.5% of the variance 

explained. Initial BMI and sex were also explained 2.2%, and 0.4% of the variance respectively. 

After adjusting for initial insulin, initial BMI, and sex, analysis confirmed a 

statistically significant relationship between the mean change in insulin and the number of CHC 

interactions (p = 0.01). 
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Table 52: The Effects of Covariates and the Number of CHC interactions on the Significance of 

Mean Change in Insulin 

Model 
Model  

Components 
R R

2
 

R
2  

Change 

F  

Change 
p value 

1 Initial Insulin .418 .175 .175 211.510 < 0.001 

2 
Initial Insulin 

Initial BMI 
.444 .197 .022 27.735 < 0.001 

3 

Initial Insulin 

Initial BMI 

Sex 

.448 .201 .004 4.702 0.030 

4 

Initial Insulin 

Initial BMI 

Sex 

# of CHC Interactions 

.454 .206 .005 6.660 0.010 

 

Graphical representation (Figure 6) of the mean change in insulin suggests a downward 

trend with each additional CHC interactions. 

 
Figure 6: Mean Change in Insulin by Number of CHC Interactions 
Error bars represent 95% Confidence Intervals 

A Bonferroni multiple comparison table (Table 53) confirms no statistically significant 

difference in the mean change in proinsulin between CHC interactions groups, (p >0.05).  
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Table 53: Bonferroni Multiple Comparison for Insulin and Number of CHC Interactions 

# of CHC 

Interaction 

Additional 

Visit 

Mean 

Difference 

Standard 

Error 
p value 

95% CI of the 

Difference 

Upper Lower 

1 2.00 .838 .452 0.384 2.03 -0.36 

3.00 1.209 .611 0.289 2.82 -0.41 

4.00 1.224 .599 0.249 2.81 -0.36 

2 1.00 -.838 .452 0.384 0.36 -2.03 

3.00 .372 .677 1.000 2.16 -1.42 

4.00 .386 .667 1.000 2.15 -1.38 

3 1.00 -1.209 .611 0.289 0.41 -2.82 

2.00 -.372 .677 1.000 1.42 -2.16 

4.00 .014 .784 1.000 2.09 -2.06 

4 1.00 -1.224 .599 0.249 0.36 -2.81 

2.00 -.386 .667 1.000 1.38 -2.15 

3.00 -.014 .784 1.000 2.06 -2.09 

 

Subject selection and results of analysis of the change in C-peptide concentration by 

number of CHC interactions.  For C-peptide, 407 subjects had at least one CHC 

interactions.  Mahalanobis distance was generated replacing only CHC Y/N with the number of 

CHC Interactions. Seven subjects were identified having a MD > 22.46 and removed prior to the 

statistical analysis. To ensure all groups had at least 10% of the largest group , subjects with 

more than four interactions were combined in to one group, four or more. Table 54 describes the 

demographics and change in C-peptide concentration for each CHC interaction group. 
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Table 54: Demographics and Change in C-peptide Concentration for Subjects by Number of 

CHC Interactions 

CHC 

Interactions  

Initial 

Age 
Sex Initial BMI 

Initial  

C-peptide 

Change in 

C-peptide 

(ng/mL) 

1       

n= 229 Mean 55.3 33% M 30.3 2.98 -0.02 

 SD 13.5 67% F 6.6 1.36 0.91 

2       

n=81 Mean 55.3 38% M 29.7 3.13 -0.33 

 SD 14.7 62% F 4.8 1.37 0.76 

3       

n=50 Mean 59.8 28% M 31.4 3.11 -0.10 

 SD 13.4 72% F 7.5 1.33 0.69 

4 or more       

n=40 Mean 59.3 20% M 30.5 3.16 -0.06 

 SD 14.6 80% F 5.8 1.59 0.90 

Total       

n =400 Mean 56.2 32%M 30.3 3.04 -0.10 

 SD 13.9 68% F 6.3 1.38 0.86 

 

Linear regression revealed no significant relationship between the mean change in C-

peptide concentration and the number of CHC interactions  

After adjusting for initial C-peptide, initial BMI, and age, no statistically significant 

effect was detected for the mean change in C-peptide and the number of CHC interactions. 

Covariates were entered stepwise into a linear regression model, with each subsequent 

model including the previous CVs and the newly entered CV.  The model summary table is 

shown as Table 55. The final model includes all significant CVs and the DV. For C-peptide, 

initial C-peptide accounted for 11.7% of the variance explained. Initial BMI and age also 

explained  2.3%, and 1.0% of the variance respectively. The number of CHC interactions did not 

statistically account for any variance explained.  After adjusting for initial C-peptide, initial BMI, 

and age,  there was no statistically significant relationship between the mean change in C-peptide 

and the number of CHC interactions (p = 0.435).    
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Table 55: The Effects of Covariates and the Number of CHC interactions on the Significance of 

Mean Change in C-peptide 

Model 
Model  

Components 
R R

2
 

R
2 

 
Change 

F  

Change 
p value 

1 Initial C-peptide .342 .117 .117 52.659 < 0.001 

2 
Initial C-peptide 

Initial BMI 
.374 .140 .023 10.595 0.001 

3 

Initial C-peptide 

Initial BMI 

Start Age 

.387 .149 .010 4.514 0.034 

4 

Initial C-peptide 

Initial BMI 

Start Age 

# of CHC Interactions 

.388 .151 .001 .612 0.435 

 

 Graphical representation (Figure 7) suggests a decrease in the mean change in C-peptide 

between CHC interaction groups one and two, with an increase noted with groups three and four. 

 
Figure 7: Mean Change in C-peptide by Number of CHC Interactions 
Error bars represent 95% Confidence Intervals 
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A Bonferroni multiple comparison table (Table 56) confirms a statistically significant 

difference in change in C-peptide between CHC interactions groups. A statistically significant 

difference exist between groups one and two (p=0.035). No other statistically significant 

differences were observed between the number of CHC interaction groups (p > 0.05).  

Table 56: Bonferroni Multiple Comparison for C-peptide and Number of CHC Interactions 

# of CHC 

Interaction 

Additional 

Visit 

Mean 

Difference 

Standard 

Error 
p value 

95% CI of the 

Difference 

Upper Lower 

1 2.00 0.306 0.111 0.035 0.600 0.013 

3.00 0.080 0.134 1.000 0.434 -0.275 

4.00 0.033 0.147 1.000 0.422 -0.356 

2 1.00 -0.306 0.111 0.035 -0.013 -0.600 

3.00 -0.227 0.154 0.848 0.181 -0.635 

4.00 -0.273 0.165 0.595 0.165 -0.712 

3 1.00 -0.080 0.134 1.000 0.275 -0.434 

2.00 0.227 0.154 0.848 0.635 -0.181 

4.00 -0.047 0.182 1.000 0.435 -0.528 

4 1.00  -0.033 0.147 1.000 0.356 -0.422 

2.00 0.273 0.165 0.595 0.712 -0.165 

3.00 0.047 0.182 1.000 -0.528 0.435 

 

Subject selection and results of analysis of the change in proinsulin concentration by 

number of CHC interactions.  There were 277 subjects that had at least one CHC 

interactions. Mahalanobis distance was generated replacing only CHC Y/N with the number of 

CHC Interactions with difference in health score. Seven subjects were identified with a MD > 

22.46 and excluded prior to the statistical analysis.  To ensure that all visit groups had at least 

10% of the number of subjects in the largest group, subjects with more than four interactions 

were combined in to one group, four or more. Table 57 describes the demographics and change 

in Proinsulin  concentration for each CHC interaction group. 
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 Table 57: Demographics and Change in Proinsulin Concentration for Subjects by Number of 

CHC Interactions 

CHC 

Interactions  

Initial 

Age 
Sex Initial BMI 

Initial 

Proinsulin 

(pmol/L) 

Change in 

Proinsulin 

(pmol/L) 

1       

n= 161 Mean 56.1 35% M 30.065 14.88 -1.07 

 SD 14.2 65% F 6.724 10.89 8.43 

2       

n=56 Mean 53.4 37% M 29.346 13.98 -1.79 

 SD 15.2 63% F 4.289 8.51 5.69 

3       

n=29 Mean 55.4 31% M 30.104 12.59 -.07 

 SD 13.6 69% F 6.8270 8.19 5.65 

4 or more       

n=24 Mean 57.3 17% M 31.535 18.75 -2.25 

 SD 15.0 82% F 5.4504 13.84 11.07 

Total       

n =270 Mean 55.5 33%M 30.051 14.79 -1.21 

 SD 14.4 67% F 6.19270 10.52 7.94 

 

Linear regression revealed no significant relationship between the mean change in 

Proinsulin concentration and the number of CHC interactions. Covariates were entered stepwise 

into a linear regression model, with each subsequent model including the previous CVs and the 

newly entered CV.  The model summary table is shown as Table 58. 

Table 58: The Effects of Covariates and the Number of CHC interactions on the Significance of 

Mean Change in Proinsulin 

Model Model Components R R
2
 

R
2  

Change 

F  

Change 
p value 

1 Initial Proinsulin .435 .189 .189 62.377 < 0.001 

2 
Initial Proinsulin 

# of CHC Interactions 
.435 .189 .000 .001 0.976 

 

The final model includes all significant CVs and the DV. For proinsulin, initial accounted 

for 18.9% of the variance explained. The number of CHC interactions did not statistically 

account for any variance explained. After adjusting for initial proinsulin, there was 



www.manaraa.com

 

 

107 

 

no statistically significant relationship between the mean change in proinsulin and the number of 

CHC interactions (p = 0.976). 

 

Graphical representation (Figure 8) suggests a decrease in the mean change in proinsulin 

between CHC interaction groups one and two and between groups three and four.  

 

Figure 8: Mean Change in Proinsulin by Number of CHC Interactions 
Error bars represent 95% confidence interval 

 

A Bonferroni multiple comparison table (Table 59) confirms no statistically significant 

difference in the mean change in proinsulin between CHC interactions groups, (p >0.05). 
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Table 59: Bonferroni Multiple Comparison for Proinsulin and Number of CHC Interactions 

# of CHC 

Interactions 

Additional 

Visit 

Mean 

Difference 

Standard 

Error 
p value 

95% CI of the 

Difference 

Upper Lower 

1 2.00 717 1.235 1.000 4.00 -2.57 

3.00 -.999 1.606 1.000 3.27 -5.27 

4.00 1.182 1.742 1.000 5.81 -3.45 

2 1.00 -.717 1.235 1.000 2.57 -4.00 

3.00 -1.717 1.821 1.000 3.12 -6.56 

4.00 .464 1.942 1.000 5.63 -4.70 

3 1.00 .999 1.606 1.000 5.27 -3.27 

2.00 1.717 1.821 1.000 6.56 -3.12 

4.00 2.181 2.197 1.000 8.02 -3.66 

4 1.00 -1.182 1.742 1.000 3.45 -5.81 

2.00 -.464 1.942 1.000 4.70 -5.63 

3.00 -2.181 2.197 1.000 -3.66 8.02 

 

Subject selection and results of analysis of the change in BMI by number of CHC 

interactions.  For BMI, 3,920 subjects had at least one CHC interaction.  Mahalanobis 

distance was generated replacing only CHC Y/N with the number of CHC Interactions. Sixty-

four subjects were identified with a MD > 20.52. These subjects were excluded prior to statistical 

analysis. To ensure all groups had at least 10% of the largest group, subjects with more than four 

interactions were combined in to one group, four or more. Table 60 describes the demographics 

and change in BMI concentration for each CHC interaction group. 
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Table 60: Demographics and Change in BMI for Subjects by Number of CHC Interactions 

CHC 

Interactions  
Initial Age Sex Initial BMI 

Change in  

BMI 

1      

n= 2142 Mean 57.9 51% M 29.4 -0.34 

 SD 13.7 49% F 6.38 2.18 

2      

n=919 Mean 57.7 54% M 30.2 -0.57 

 SD 13.4 46% F 6.56 2.27 

3      

n=376 Mean 57.3 53% M 30.8 -0.63 

 SD 13.0 47% F 6.69 2.41 

4 or more      

n=419 Mean 58.1 49% M 31.5 -0.94 

 SD 13.7 51% F 7.00 2.35 

Total      

n =3856 Mean 57.8 52%M 30.0 -0.49 

 SD 13.5 48% F 6.56 2.25 

 

Linear regression revealed no significant relationship between the mean change in BMI 

and the number of CHC interactions. Covariates were entered stepwise into a linear regression 

model, with each subsequent model including the previous CVs and the newly entered CV.  The 

model summary table is shown as Table 61. The final model includes all significant CVs and the 

DV. For BMI, initial BMI accounted for 5.1% of the variance explained. The number of CHC 

interactions did statistically account for some variance explained, 0.4%. After adjusting initial 

BMI, analysis confirmed a statistically significant relationship between the mean change in BMI 

and the number of CHC interactions (p < 0.001). 

Table 61: The Effects of Covariates and the Number of CHC interactions on the Significance of 

Mean Change in BMI 

Model Model Components R R
2
 

R
2  

Change 

F 

 Change 
p value 

1 Initial BMI .226 .051 .051 206.969 0.000 

2 Initial BMI .234 .055 .004 15.104 0.000 

 # of CHC Interactions      
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Graphical representation (Figure 9) of the mean change in BMI suggests a downward 

trend in change in BMI with each additional CHC interaction.  

 
Figure 9: Mean Change in BMI by Number of CHC Interaction 
Error bars represent 95% confidence interval 

The Bonferroni multiple comparison table (Table 62) confirms a statistically significant 

difference in change in BMI between CHC interactions groups.  A statistically significant 

difference in mean change was detected between CHC groups one and four, (p < 0.001) and 

between groups two and four (p = 0.034). Decreases in the mean change in BMI was also seen 

between groups one and two, between two and three, and between three and four, however the 

change was not significant, (p > 0.05).  
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Table 62: Bonferroni Multiple Comparison for BMI and Number of CHC Interactions 

# of CHC 

Interactions 

Additional 

Visit 

Mean 

Difference 

Standard 

Error 
p value 

95% CI of the 

Difference 

Upper Lower 

1 2.00 0.230 0.089 0.056 0.464 -0.003 

3.00 0.295 0.126 0.114 0.626 -0.037 

4.00 0.597 0.120 0.000 0.913 0.280 

2 1.00 -0.230 0.089 0.056 0.003 -0.464 

3.00 0.064 0.137 1.000 0.427 -0.299 

4.00 .366 0.132 0.034 0.716 0.017 

3 1.00 -0.295 0.126 0.114 0.037 -0.626 

2.00 -0.064 0.137 1.000 0.299 -0.427 

4.00 0.302 0.160 0.351 0.723 -0.119 

4 1.00 -0.597 0.120 0.000 -.280 -0.913 

2.00 -0.366 0.132 0.034 -0.017 -0.716 

3.00 -0.302 0.160 0.351 0.119 -0.723 

 

Post-Hoc Analysis of Sample Size Requirements 

Minimum sample size requirements are presented in Table 63. The mean changes and 

SDs of those changes, along with the number of subjects in each group were used in the 

determination of the Cohn’s D for all biomarkers and BMI. Soper’s online sample size calculator 

generates sample size estimates using the estimated effects size, the desired statistical power 

level, number of predictors, and a predetermined probability level. A power of 0.8 and 

probability of 0.05 was used for all sample size calculations. The number of predictors was 

determined by adding the number of CVs used in the ANCOVA to the DV.  Table 63 describes 

the samples size requirements for each biomarker. These requirements were met for each of the 

analyses performed in this study.  

 

 

 

 



www.manaraa.com

 

 

112 

 

Table 63: Post-Hoc Sample Size Determination 

Test 

Mean 

Change 

Non-CHC 

Mean (SD) 

Mean 

Change 

CHC 

Mean (SD) 

Non 

CHC 

n 

CHC 

n 

Cohen’s 

D 

Number 

of 

Predictors 

Soper’s 

Sample 

Size 

Glucose 
-0.08 

(13.31) 

0.57 

(12.77) 
964 962 0.049836 4 262 

Hemoglobin 

A1c 

-0.11 

(.39) 

-0.10 

(0.40) 
1295 1315 0.025314 2 378 

1,5-AG 
1.29 

(3.64) 

0.37 

(3.67) 
117 25 0.251708 2 41 

Insulin 
0.11 

(5.31) 

0.78 

(5.65) 
1010 973 0.122204 4 102 

C-Peptide 
0.03 

(0.73) 

0.11 

(0.84) 
422 401 0.101662 4 122 

Proinsulin 
-0.23 

(7.71) 

1.17 

(7.92) 
249 274 0.179127 5 77 

BMI 
0.20 

(2.16) 

0.49 

(2.22) 
3912 3893 0.132408 2 75 
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Chapter 5: Discussion 

 

 

 Chapter 5 provides an overview of the results stated in Chapter Four. This chapter 

discusses the three Specific Aim and markers investigated within each aim. Clinical implications 

and relation to the study hypotheses are presented. Finally, study limitations are discussed as 

well as suggestions for future studies.  

Discussion of the Study 

 This study was conducted to determine if there is a relationship between the changes in 

subjects’ biomarkers of glucose homeostasis and BMI, and their interactions with CHCs. 

Subjects’ laboratory results, demographics, whether or not they engaged in CHC interactions, 

and if so, how many times, were obtained retrospectively from a laboratory in Richmond, VA. 

There are reports that CHCs are effective at improving BMI and %HbA1c; but research on their 

effectiveness at improving other markers of glucose homeostasis, such as insulin, C-peptide, 

proinsulin, and 1,5-AG has not been published. Additionally, research relating the magnitude of 

the change in BMI and biomarkers, and the number of CHC interactions, could not be found. 

This study compared the change in BMI and biomarkers over a one-year period for two groups, 

those who participated in CHC interactions, and those that did not.  
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Specific Aim 1 

The results of this portion of the study confirmed a statistical difference between those 

who had CHC interactions and those who did not, but only for the average decrease in BMI. 

Reductions in the mean BMI were consistent with the findings of Apple et al., in which weight 

reductions were recorded over 24 months of various coaching styles (Apple et al. 2011). 

Clinically significant weight loss is defined as a 5% reduction in body weight (Stevens et al., 

2006). In our study, the subjects’ initial weight was not extracted from the records; but the mean 

change in BMI for the CHC interaction group was only - 0.49, suggesting that the changes were 

not clinically significant.  

For all seven markers, the initial values explained more of the variance in every statistical 

model, than the use of CHCs, or any other CV. This suggests that initial marker value had the 

most influence of the variables used in this study in predicting the change in mean maker values. 

Random error accounted for the most variance. The only marker with a statistically significant 

difference was BMI. The difference in BMI could have been explained by the large sample size. 

BMI had almost three times the number of subjects than another marker. In addition, BMI was 

the only marker directly measured at the time of collection. The phlebotomist or nurse measured 

the patient’s height and weight at the time of visit. The results of BMI were not affected by the 

same analytical sources of error as the other markers. Sources of error found with blood 

collection, sample integrity, or analytical variations on the instrument were not a potential source 

of error for the measurement of BMI. However, BMI could have been affected by variations in 

the scales used for measuring weight or variations with the techniques used to measure height.  

The increase in mean %HbA1c is discordant with the findings of Wayne & Rivito 2014,  

Ko et al. 2007, and Battista et al., 2012. All three studies found that CHCs have a positive impact 
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on glucose homeostasis as evidenced by the improvement in %HbA1c in their patients. Wayne & 

Rivito utilized smartphone technology to accommodate subjects, and concluded that 

communication and support improved %HbA1c. Ko et al. concluded that coaching lowered 

%HbA1c. In addition, Battista et al. reported that dietitian education and guidance led to a 0.6% 

reduction in %HbA1c, a common topic discussed with CHC interactions. The CHCs utilized in 

this study had to be a registered dietician, exercise specialist, or registered nurse. The transition 

from the BioRad Turbo to the Trinity HPLCE methodology could explain the increase. As noted 

in the method comparison, the Trinity HPLC method did have a slightly positive bias compared 

to the BioRad Turbo. The combination of methodology change and variation in calibrator could 

be one factor for the increase. In addition, only a small percentage of variance was explained by 

the CVs and the IV, the majority of variance was unaccounted for as random error.  

The effects of CHC therapies on changes in 1,5-AG, C-peptide, insulin, and proinsulin 

have not been published.  As with the other markers, initial marker values accounted for the most 

variance of the variables used in statistical analysis. This would suggest that initial marker value, 

not the use of CHC interaction were more predictive of improvements in C-peptide, insulin, and 

proinsulin. However, the improvement of insulin, C-peptide, and proinsulin in the both the CHC 

and non-CHC groups could indicate an improvement of beta-cell health and therefore could 

improve overall glycemic control.  

In addition to testing the statistical significance of CHC interactions on the mean change 

in markers, the clinical significance of the changes were also determined. Mean marker changes 

were compared to the range of biological change to determine clinical significance. The initial 

marker minimums and maximums were used to determine the absolute significant change by 

determining the percent change for the minimum and maximum values. The percent biological 
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variation for glucose, %HbA1c, insulin, and C-peptide were transformed to absolute values. The 

mean of the transformed values were compared to the mean change in the observed CHC 

interaction group. Clinically significant changes in biomarkers were not apparent for all subjects. 

The mean changes calculated for glucose, HbA1c, and C-peptide were less than the calculated 

mean absolute within marker changes (see Table 64). The changes in insulin, although not 

statistically significant, may be clinically significant.  

Table 64: Relationship Between Within-Subject Biological Variation and the Observed Mean 

Change in Markers of Glucose Homeostasis for Subjects with CHC Interactions 

Marker 
CVI 

(%) 

Lowest 

Initial 

Result 

Highest 

Initial 

Result 

Absolute 

Mean 

Change 

CHC 

group 

Change 

Required 

for 

Significance 

 

Estimated 

Mean 

Range 

Change for 

Significance 

 

Glucose 

(mg/dL) 
5.6 52 331 0.57 5.8-37 10.7 

Hemoglobin 

A1c (%) 
1.9 4.1 9.9 0.10 0.16-0.38 0.14 

Insulin 

(μU/mL) 
14.6 

1 

 

46 

 

0.78 

 

0.3-13.26 

 

0.50 

 

C-Peptide 

(ng/mL) 
16.6 0.5 8.9 0.11 0.16-7.7 2.0 

CVI = within-subject biologic variation 

(Ricos, 2014) 

 

Furthermore, the reagent lot-to-lot variation could be a source of variation. Table 65 

describes the average bias of the reagent changes during the study timeframe. This could account 

for some of the unexplained variance in the biomarker ANCOVAs.  
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Table 65: Analytical Variation Observed with Reagent Change During the Study Timeframe  

Test 

Number of 

Reagent 

lot-to-lots 

Date Range Average Bias 

(%) 

 

 

Glucose 30 2012-2016 0.7 

Hemoglobin A1c- BioRad 34 2012-2014 -0.3 

Hemoglobin A1c- Trinity N/A N/A N/A 

1,5-Anhydroglucitol 18 2013-2016 1 

Insulin 7 2012-2016 -0.6 

C-Peptide 7 2012-2016 -1.5 

Proinsulin 13 2012-2016 -1 

Specific Aim 2 

The results for blood glucose concentration and %HgbA1c were assigned a health score 

based upon the established ranges for normal, prediabetes, and diabetes. Likewise, results for 

BMI were assigned a health score based upon the established ranges for normal, overweight, and 

obese.  

Initial t-tests indicated that no statistical difference between the change in mean health 

score for those who did and did not participate in CHC interactions exists for glucose or HbA1c 

(p > 0.05). A statistically significant difference was found between the two groups for the 

unadjusted mean change in BMI health score (p < 0.001).  

Statistically significant differences in the changes in mean BMI health scores were found 

between subjects with CHC interactions, and subjects without CHC interactions (p = 0.001). 

However, the differences in the changes in health scores for glucose and %HgbA1c were not 

significantly different between those groups of subjects. As was the case for the actual results for 

these markers, more of the variance in the changes in health scores was explained by the initial 

values for the markers. The low amount of variance accounted for by the CHC interaction group 

and the study CVs suggests that a majority of the difference is explained by random error, as 
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indicated by the analytical imprecision of the glucose and HbA1c  assays and  normal biological 

variation.  

There was a drop in the number of subjects classified as obese in both groups; but there 

were more subjects with CHC interactions who showed an improvement in BMI classification 

than those without CHC interactions. Health coach interactions are known to encourage weight 

loss (Leahey & Wing, 2013, Appel et al., 2011). Therefore, it was expected to observe 

improvements in weight and BMI that would result in a change in BMI health score. For the 

glucose health score, there was a small decrease in the number of subjects classified as diabetic 

in the group with CHC interactions, but no decrease in the group without CHC interactions. On 

the other hand, there was a decrease in the number of subjects classified as normal by their 

HgbA1c health score in both groups.  One explanation could be the tendency of subjects to fast 

before their blood draws, without improving their day-to-day lifestyle. These variations in diet 

and activity can alter glucose results, potentially indicating an improved lifestyle. The HbA1c 

assay is not affected by these variations, producing a more accurate indication of the subject’s 

diet. Furthermore, the decrease in the normal classification could be explained by the change in 

HbA1c assay methodology. The method comparison between the BioRad Turbo and Trinity 

Premier HbA1c assays indicated a slight positive bias with the Trinity assay. Since the subjects 

in the glucose, HbA1c, and BMI groups were different from the each other, comparison of the 

trends between CHC and non-CHC groups was not possible.   

For all of the markers and health scores, the standard deviations in the changes in these 

parameters were much larger than the mean changes. This, along with the small percentage of 

the variances in the changes that was explained by CHC interactions, suggests that there were 

other factors that influenced the behaviors and changes in the markers of the subjects in both 
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groups. These factors could include prescribed medications, dietary habits, or exercise routines. 

All study subjects were provided with the same laboratory report, which included information on 

their overall health. The results of this study suggest that some individuals need CHCs for 

motivation to move through the stages of the TTM towards a healthier lifestyle, while others are 

self-motivated to do so.   

Specific Aim 3 

 There was a statistically significant relationship between the magnitude of change in 

marker results and the number of CHC interactions, but only for insulin and BMI after the effects 

of the covariates were taken into account. The known relationship between increases in BMI and 

insulin resistance (Chung, Cho, Chung, & Chung, 2012) could explain why of the number of 

CHC interactions affected change in Insulin and BMI and not the other markers. However, not 

all subjects in the insulin marker group may have been in the BMI group and vise-versa. As with 

the changes in marker values and changes in health scores, the initial marker values explained 

more of the variance in those changes than any other covariate or CHC interactions.   

In the case of the mean change in %HbA1c, there was an increase in %HbA1c regardless of the 

number CHC interactions, which is not consistent with the changes in insulin concentration and 

BMI. However, there was a transition from the BioRad Turbo Variant to the Trinity Premier 

Boronate affinity HbA1c testing platforms during the study period that could explain this 

observation.  

Glucose and proinsulin are both sensitive to fasting status. If a subject ate or drank 

something during a fasting period, a falsely increased glucose or proinsulin could have been 

present. For not just glucose or proinsulin, if a subject misrepresented their fasting status or the 

duration of fasting, variations in all biomarkers with the exception of HbA1c and 1,5-AG could 
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be present as well. The inability to confirm fasting status in the study poses a limitation for all 

three Aims.  

Conclusions 

 For all three Specific Aims in this study, there was a significant difference in the mean 

changes in BMI between patients who had CHC interactions and those who did not, as well as 

between patients with different numbers of CHC interactions. None of the other markers of 

glucose homeostasis showed consistent, significant differences between subjects in those groups. 

The initial BMI and initial biomarker values also showed consistent and significant effects across 

all three Specific Aims, and appear to be a more powerful motivators for change than CHCs 

alone.   

Limitations 

The first limitation of the study is the uncertainty of additional activities the subjects 

might have engaged in during the study timeframe. Neither the LIS database nor the CHC 

interaction database contains information on other resources/interventions the subjects might 

have utilized. Therefore, differences in training and credentials, coaching style, length of 

interactions, approachability, or recommended strategies specific to each coach may have 

affected the marker results.  

Comorbidities in the study subjects were also not available for the data analysis. 

Diagnosis of diabetes or insulin resistance prior to being seen be the CHC could affect the study 

subjects’ expectations or views of the CHC interactions. Subjects may have had diseases other 

than diabetes such as cardiovascular, liver, or kidney disease that could have affected their ability 

to control their glucose homeostasis.  Liver and kidney diseases can also affect the clearance of 
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the markers and affected the results. In addition, mental and/or physical conditions could limit or 

inhibit the study participants’ ability to adhere to CHC recommendations.  

The inability to confirm that subjects followed the recommendations of the CHCs is also 

a limitation of this study. Whether or not subjects were actually fasting at the time of the blood 

collections could also not be confirmed. In addition, subjects’ motivation to change their own 

behavior and improve glucose homeostasis was not measured. As mentioned earlier, a change in 

the methodology for measuring %HbA1c occurred during the study period, and may have 

introduced a bias in the follow-up results for some subjects.  

  

Recommendations for Future Studies 

 The advantages of a retrospective such as reduced cost, availability of study subjects and 

data, and fewer IRB restrictions, also come with disadvantages. A prospective study could ensure 

that the sample size is the same across all biomarkers, as well as between the control and 

intervention groups. This would allow for multivariate analysis of the biomarkers to investigate 

the overall effect of the CHCs on changes within and across biomarker groups. Future studies 

should identify subjects with comorbidities, medications, or other therapies that could impact the 

measurement of the markers or changes in their results. Future studies should also standardize 

the CHC interactions, themselves. Finally, it would be recommended not include subjects whose 

study timeframe included a methodology change.  
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